These report are all html based and could be linked/iframed into a another frame file
This doc shows the detailed method about how to test and debug the templates locally and remotely if this package is installed on remote server
Current server is on compute Canada. The server is configured with a open cpu web server and open to the world.
About how to make opencpu request is detailed here: https://www.opencpu.org/api.html
#library(jsonlite) #library(httr)
see table format requirement for more information: https://github.com/northomics/Metalab_development_wiki/wiki
open the correstpoding rmarkdown file to debug
setup the working directory as this file
data_table <- rio::import("./extdata/summary.txt", header = TRUE,check.names = FALSE, stringsAsFactors = FALSE) # knit to all supported format (here we support pdf and html) rmarkdown::render("./rmd/MQ_report_summary.Rmd",output_format = "html_document", params = list(data_table = data_table), output_dir = getwd())
data_table <- rio::import("./extdata/summary.txt", header = TRUE,check.names = FALSE, stringsAsFactors = FALSE) meta_table <- rio::import("./extdata/metainfo.txt", header = TRUE,check.names = FALSE, stringsAsFactors = FALSE) rmarkdown::render("./rmd/MQ_report_summary.Rmd",output_format = "html_document", params = list(data_table = data_table, meta_table = meta_table), output_dir = getwd())
url_api <- "http://206.12.91.148/ocpu/library/rmdocpu/R/render_MQsummary_file" # get the root url url_api_split <- strsplit(url_api, "/")[[1]] url_server<- paste0(url_api_split[1],"//", url_api_split[3],"/")
# upload file and do the rendering # in this case, the summary.txt is in the working dir. it can be anywhere with the path # meta file is optional r <- httr::POST(url_api, body = list(file = httr::upload_file("summary.txt"))) #r <- httr::POST(url_api, body = list(file = httr::upload_file("summary.txt"), meta = httr::upload_file("summary_metainfo.txt"))) # get all the paths of all files from the opencpu end, and locate the one, which is the report # this step needs to be done in the script enviroment paths <- strsplit(rawToChar(r$content), "\n")[[1]] path_target <- paths[grep("output.html",paths)] # save/download the report file to local storage # the file "maxquant_result_summary.html" now is the report curl::curl_download(paste0(url_server, path_target), "report_ID_summary.html")
# upload file and do the rendering # in this case, the summary.txt is in the working dir. it can be anywhere with the path # meta file is optional #r <- httr::POST(url_api, body = list(file = httr::upload_file("summary.txt"))) r <- httr::POST(url_api, body = list(file = httr::upload_file("summary.txt"), meta = httr::upload_file("metainfo.txt"))) # get all the paths of all files from the opencpu end, and locate the one, which is the report # this step needs to be done in the script enviroment paths <- strsplit(rawToChar(r$content), "\n")[[1]] path_target <- paths[grep("output.html",paths)] # save/download the report file to local storage # the file "maxquant_result_summary.html" now is the report curl::curl_download(paste0(url_server, path_target), "report_ID_summary.html")
data_table <- read.delim("proteinGroups_report.txt", header = TRUE,check.names = FALSE, stringsAsFactors = FALSE) # NOTE the read in options rmarkdown::render("MQ_report_proteinGroups.Rmd",output_format = "html_document", params = list(input_datatable = data_table), output_file="report_proteinGroups_summary.html")
data_table <- read.delim("proteinGroups.txt", header = TRUE,check.names = FALSE, stringsAsFactors = FALSE) # NOTE the read in options meta_table <- read.delim("metainfo.txt", header = TRUE, check.names = FALSE, stringsAsFactors = FALSE) # with meta file rmarkdown::render("MQ_report_proteinGroups.Rmd",output_format = "html_document", params = list(input_datatable = data_table, meta_table = meta_table), output_file="report_proteinGroups_summary.html")
url_api <- "http://206.12.91.148/ocpu/library/rmdocpu/R/render_proteinGroups_file" # get the root url url_api_split <- strsplit(url_api, "/")[[1]] url_server<- paste0(url_api_split[1],"//", url_api_split[3],"/") # upload file and do the rendering # in this case, the proteinGroups.txt is in the working dir. it can be anywhere with the path # variable r is the returning information from the curl function r <- httr::POST(url_api, body = list(file = httr::upload_file("proteinGroups_report.txt"))) #r <- httr::POST(url_api, body = list(file = httr::upload_file("proteinGroups1.txt"), meta = httr::upload_file("proteinGroups1_meta.txt")), httr::timeout(200000)) # get all the paths of all files from the opencpu end, and locate the one, which is the report # this step needs to be done in the script enviroment paths <- strsplit(rawToChar(r$content), "\n")[[1]] path_target <- paths[grep("output.html",paths)] #paths # save/download the report file to local storage # the file "maxquant_result_summary.html" now is the report curl::curl_download(paste0(url_server, path_target), "report_proteinGroups_summary.html")
url_api <- "http://206.12.91.148/ocpu/library/rmdocpu/R/render_proteinGroups_file" # get the root url url_api_split <- strsplit(url_api, "/")[[1]] url_server<- paste0(url_api_split[1],"//", url_api_split[3],"/") # upload file and do the rendering # in this case, the proteinGroups.txt is in the working dir. it can be anywhere with the path # variable r is the returning information from the curl function #r <- httr::POST(url_api, body = list(file = httr::upload_file("final_proteins.tsv"))) r <- httr::POST(url_api, body = list(file = httr::upload_file("proteinGroups_report.txt"), meta = httr::upload_file("metainfo.txt")), httr::timeout(200000)) # get all the paths of all files from the opencpu end, and locate the one, which is the report # this step needs to be done in the script enviroment paths <- strsplit(rawToChar(r$content), "\n")[[1]] path_target <- paths[grep("output.html",paths)] paths # save/download the report file to local storage # the file "maxquant_result_summary.html" now is the report curl::curl_download(paste0(url_server, path_target), "report_proteinGroups_summary.html")
# test on locoal drive, using local rmd data_table <- rio::import("./extdata/peptides_report.txt", header = TRUE,check.names = FALSE, stringsAsFactors = FALSE) rmarkdown::render("./rmd/MQ_report_peptides.Rmd",output_format = "html_document", params = list(data_table = data_table), output_dir = getwd())
data_table <- rio::import("./extdata/peptides_report.txt", header = TRUE,check.names = FALSE, stringsAsFactors = FALSE) # NOTE the readin options meta_table <- rio::import("./extdata/metainfo.txt", header = TRUE, check.names = FALSE, stringsAsFactors = FALSE) # with meta file rmarkdown::render("./rmd/MQ_report_peptides.Rmd",output_format = "html_document", params = list(data_table = data_table, meta_table = meta_table), output_file="MQ_report_peptides.html",output_dir = getwd())
url_api <- "http://206.12.91.148/ocpu/library/rmdocpu/R/render_peptides_file" # get the root url url_api_split <- strsplit(url_api, "/")[[1]] url_server<- paste0(url_api_split[1],"//", url_api_split[3],"/") # upload file and do the rendering # variable r is the returning information from the curl function r <- httr::POST(url_api, body = list(file = httr::upload_file("peptides.txt"))) #r <- httr::POST(url_api, body = list(file = httr::upload_file("peptides3.txt"),meta = httr::upload_file("peptides3_meta.txt")), httr::timeout(200000)) r$status_code # get all the paths of all files from the opencpu end, and locate the one, which is the report # this step needs to be done in the script enviroment paths <- strsplit(rawToChar(r$content), "\n")[[1]] path_target <- paths[grep("output.html",paths)] path_target # save/download the report file to local storage # the file "maxquant_result_summary.html" now is the report curl::curl_download(paste0(url_server, path_target), "report_peptides_summary.html")
url_api <- "http://206.12.91.148/ocpu/library/rmdocpu/R/render_peptides_file" # get the root url url_api_split <- strsplit(url_api, "/")[[1]] url_server<- paste0(url_api_split[1],"//", url_api_split[3],"/") # upload file and do the rendering # in this case, the proteinGroups.txt is in the working dir. it can be anywhere with the path # variable r is the returning information from the curl function #r <- httr::POST(url_api, body = list(file = httr::upload_file("peptides.txt"))) r <- httr::POST(url_api, body = list(file = httr::upload_file("peptides.txt"),meta = httr::upload_file("metainfo.txt")), httr::timeout(200000)) r$status_code # get all the paths of all files from the opencpu end, and locate the one, which is the report # this step needs to be done in the script enviroment paths <- strsplit(rawToChar(r$content), "\n")[[1]] path_target <- paths[grep("output.html",paths)] path_target # save/download the report file to local storage # the file "maxquant_result_summary.html" now is the report curl::curl_download(paste0(url_server, path_target), "report_peptides_summary.html")
url_api <- "http://206.12.91.148/ocpu/library/rmdocpu/R/render_taxon_file" # get the root url url_api_split <- strsplit(url_api, "/")[[1]] url_server<- paste0(url_api_split[1],"//", url_api_split[3],"/") # upload file and do the rendering # variable r is the returning information from the curl function r <- httr::POST(url_api, body = list(file = httr::upload_file("BuiltIn.taxa.refine.csv"))) # get all the paths of all files from the opencpu end, and locate the one, which is the report # this step needs to be done in the script enviroment paths <- strsplit(rawToChar(r$content), "\n")[[1]] path_target <- paths[grep("output.html",paths)] # save/download the report file to local storage # the file "maxquant_result_summary.html" now is the report curl::curl_download(paste0(url_server, path_target), "report_taxonomy_summary.html")
url_api <- "http://206.12.91.148/ocpu/library/rmdocpu/R/render_taxon_file" # get the root url url_api_split <- strsplit(url_api, "/")[[1]] url_server<- paste0(url_api_split[1],"//", url_api_split[3],"/") # upload file and do the rendering # variable r is the returning information from the curl function r <- httr::POST(url_api, body = list(file = httr::upload_file("BuiltIn.taxa.refine.csv"),meta = httr::upload_file("metainfo.txt")), httr::timeout(200000)) # get all the paths of all files from the opencpu end, and locate the one, which is the report # this step needs to be done in the script enviroment paths <- strsplit(rawToChar(r$content), "\n")[[1]] path_target <- paths[grep("output.html",paths)] # save/download the report file to local storage # the file "maxquant_result_summary.html" now is the report curl::curl_download(paste0(url_server, path_target), "report_taxonomy_summary.html")
url_api <- "http://206.12.91.148/ocpu/library/rmdocpu/R/render_function_file" # get the root url url_api_split <- strsplit(url_api, "/")[[1]] url_server<- paste0(url_api_split[1],"//", url_api_split[3],"/") # upload file and do the rendering # variable r is the returning information from the curl function r <- httr::POST(url_api, body = list(file = httr::upload_file("extdata/functions.csv"))) r$status_code # get all the paths of all files from the opencpu end, and locate the one, which is the report # this step needs to be done in the script enviroment paths <- strsplit(rawToChar(r$content), "\n")[[1]] path_target <- paths[grep("output.html",paths)] # save/download the report file to local storage # the file "maxquant_result_summary.html" now is the report curl::curl_download(paste0(url_server, path_target), "report_function_summary.html")
url_api <- "http://206.12.91.148/ocpu/library/rmdocpu/R/render_function_file" # get the root url url_api_split <- strsplit(url_api, "/")[[1]] url_server<- paste0(url_api_split[1],"//", url_api_split[3],"/") # upload file and do the rendering # variable r is the returning information from the curl function #r <- httr::POST(url_api, body = list(file = httr::upload_file("functions.csv"))) r <- httr::POST(url_api, body = list(file = httr::upload_file("functions.csv"), meta = httr::upload_file("metainfo.txt"))) r$status_code # get all the paths of all files from the opencpu end, and locate the one, which is the report # this step needs to be done in the script enviroment paths <- strsplit(rawToChar(r$content), "\n")[[1]] path_target <- paths[grep("output.html",paths)] # save/download the report file to local storage # the file "maxquant_result_summary.html" now is the report curl::curl_download(paste0(url_server, path_target), "report_function_summary.html")
data_table <- read.delim("extdata/functions.csv", header = TRUE,sep= ",",check.names = TRUE, stringsAsFactors = FALSE) #data_table <- read.delim("extdata/functions_20211015.csv", header = TRUE,sep= ",",check.names = TRUE, stringsAsFactors = FALSE) # knit to all supported format (here we support pdf and html) data_table <- read.delim("extdata/functions_20211018.tsv", header = TRUE,sep= "\t",quote="", check.names = TRUE, stringsAsFactors = FALSE,) data_table <- rio::import("extdata/functions_20211018.tsv",check.names = TRUE) rmarkdown::render("rmd/ML_report_function.Rmd",output_format = "html_document", params = list(input_datatable = data_table))
### with meta data_table <- read.delim("functions.csv", header = TRUE,check.names = FALSE, stringsAsFactors = FALSE) meta_table <- read.delim("metainfo.txt", header = TRUE,check.names = FALSE, stringsAsFactors = FALSE) rmarkdown::render("ML_report_function.Rmd",output_format = "html_document", params = list(input_datatable = data_table, meta_table = meta_table ))
data_table <- data_table <- read.delim("./extdata/peptides.txt", row.names = 1) # NOTE the readin options meta_table <- rio::import("./extdata/metainfo_pepfunk.txt", header = TRUE, check.names = FALSE, stringsAsFactors = FALSE) # with meta file #meta_table <- read.delim("./extdata/metadata.csv", header=F, sep=",") rmarkdown::render("./rmd/ML_report_pepFunk.Rmd",output_format = "html_document", output_dir = getwd(), params = list(data_table = data_table, meta_table = meta_table )) rmarkdown::render("./rmd/ML_report_pepFunk.Rmd",output_format = "html_document", output_dir = getwd(), envir = new.env(), params = list(data_table = data_table, meta_table = meta_table )) # for debugging #params$data_table <- data_table #params$meta_table <- meta_table
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.