Description Usage Arguments Value
View source: R/predictive_validity_functions.R
Given a dataset, calculate Root Mean Squared Error and Relative Squared Error (both weighted and unweighted) for predictions across a dataset. The observed data should come in the form of separate numerator and denominator columns, while the estimates should be a single field estimating a rate (i.e. already normalized by denominator)
| 1 2 3 4 5 6 7 | calculate_rmse_rse(
  in_data,
  num_field,
  denom_field,
  est_field,
  group_fields = NULL
)
 | 
| in_data | Input data.table | 
| num_field | Numerator field for the observed data | 
| denom_field | Denominator field for the observed data | 
| est_field | Estimator field, presented as a rate (num/denom) | 
| group_fields | [optional, default NULL] If the predictive validity metrics should be grouped, list the fields to group them by here. If NULL (the default), the predictive validity metrics will be calculated across the entire dataset | 
A data.table with the following fields: - 'rmse': Root mean squared error, unweighted - 'rmse_weighted': Root mean squared error, weighted by population size - 'rse': Relative squared error, unweighted - 'rse_weighted': Relative squared error, weighted by population size - Any grouping columns specified in the function arguments
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.