impute_mean: Impute the mean value into a vector with missing values

View source: R/impute_mean.R

impute_meanR Documentation

Impute the mean value into a vector with missing values

Description

This can be useful if you are imputing specific values, however we would generally recommend to impute using other model based approaches. See the simputation package, for example simputation::impute_lm().

Usage

impute_mean(x)

## Default S3 method:
impute_mean(x)

## S3 method for class 'factor'
impute_mean(x)

Arguments

x

vector

Value

vector with mean values replaced

Examples


library(dplyr)
vec <- rnorm(10)

vec[sample(1:10, 3)] <- NA

impute_mean(vec)

dat <- tibble(
  num = rnorm(10),
  int = as.integer(rpois(10, 5)),
  fct = factor(LETTERS[1:10])
) %>%
  mutate(
    across(
      everything(),
      \(x) set_prop_miss(x, prop = 0.25)
    )
  )

dat

dat %>%
  nabular() %>%
  mutate(
    num = impute_mean(num),
    int = impute_mean(int),
    fct = impute_mean(fct),
  )

dat %>%
  nabular() %>%
  mutate(
    across(
      where(is.numeric),
      impute_mean
    )
  )

dat %>%
  nabular() %>%
  mutate(
    across(
      c("num", "int"),
      impute_mean
    )
  )


njtierney/naniar documentation built on March 19, 2024, 9:48 p.m.