Description Usage Arguments Value See Also Examples
This function plots ROC curves from the results of the assess_models
function
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | plot_roc(
...,
individual_plot = TRUE,
combined_plot = TRUE,
facet_plot = TRUE,
facet_summary = TRUE,
colors,
model_names,
plot_auc_polygon = TRUE,
plot_ci = TRUE,
line_size = 1,
print_auc = TRUE,
print_ci = TRUE,
print_auc_ci_font_size = 4,
print_auc_ci_x,
print_auc_ci_y,
plot_legend = TRUE,
plot_title,
facet_n_row = NULL,
facet_n_col = 2,
legend_spacing = FALSE
)
|
... |
Output(s) of the |
individual_plot |
If TRUE, graphs individual ROC curves for each model. Defaults to TRUE. |
combined_plot |
If TRUE, and modelAssessment contains multiple models, graphs a plot with all ROC curves overlapping. Defaults to TRUE. |
facet_plot |
If TRUE, and modelAssessment contains multiple models, graphs a faceted plot with all ROC curves included. Defaults to TRUE. |
facet_summary |
If TRUE, and modelAssessment contains multiple models, the facet_plot will include a plot with all ROC curves overlapping. Defaults to TRUE. |
colors |
A vector of colors to use for each model's ROC curve. |
model_names |
A vector of strings to use as titles/names for each model. |
plot_auc_polygon |
If TRUE, the area below with ROC curve with the lowest AUC will be shaded in. Defaults to TRUE. |
plot_ci |
If TRUE, a confidence band will be plotted around each ROC curve. Defaults to TRUE. |
line_size |
A numeric representing the width of the ROC curve line. Defaults to 1. |
print_auc |
If TRUE, the value of the AUC will be printed on the plot. Defaults to TRUE. |
print_ci |
If TRUE, the range of the confidence interval will be printed on the plot. Defaults to TRUE. |
print_auc_ci_font_size |
The font size for printed values for the AUC and confidence interval. Defaults to 4. |
print_auc_ci_x |
A vector of x (horizontal) positions determining where on the plot the AUC and confidence interval values will be printed. |
print_auc_ci_y |
A vector of y (vertical) positions determining where on the plot the AUC and confidence interval values will be printed. |
plot_legend |
If TRUE, a legend will be printed on all plots. |
plot_title |
The title of the plot |
facet_n_row |
The number of rows used to plot the facet_plot. Defaults to NULL. |
facet_n_col |
The number of columns used to plot the facet_plot. Defaults to 2. |
legend_spacing |
If TRUE, there will be spacing between the legend items. Defaults to FALSE. |
Nothing (this function plots a series of graphs)
language_model
, comparison_model
, test_language_model
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | ## Not run:
strong_movie_review_data$cleanText = clean_text(strong_movie_review_data$text)
mild_movie_review_data$cleanText = clean_text(mild_movie_review_data$text)
# Using language to predict "Positive" vs. "Negative" reviews
# Only for strong reviews (ratings of 1 or 10)
movie_model_strong = language_model(strong_movie_review_data,
outcome = "valence",
outcomeType = "binary",
text = "cleanText",
progressBar = FALSE)
# Using language to predict "Positive" vs. "Negative" reviews
# Only for mild reviews (ratings of 4 or 7)
movie_model_mild = language_model(mild_movie_review_data,
outcome = "valence",
outcomeType = "binary",
text = "cleanText",
progressBar = FALSE)
# Plot ROC curves
plot_roc(movie_model_strong, movie_model_mild)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.