rxode2 | R Documentation |
Create a dynamic ODE-based model object suitably for translation into fast C code
rxode2(
model,
modName = basename(wd),
wd = getwd(),
filename = NULL,
extraC = NULL,
debug = FALSE,
calcJac = NULL,
calcSens = NULL,
collapseModel = FALSE,
package = NULL,
...,
linCmtSens = c("linCmtA", "linCmtB", "linCmtC"),
indLin = FALSE,
verbose = FALSE,
fullPrint = getOption("rxode2.fullPrint", FALSE),
envir = parent.frame()
)
RxODE(
model,
modName = basename(wd),
wd = getwd(),
filename = NULL,
extraC = NULL,
debug = FALSE,
calcJac = NULL,
calcSens = NULL,
collapseModel = FALSE,
package = NULL,
...,
linCmtSens = c("linCmtA", "linCmtB", "linCmtC"),
indLin = FALSE,
verbose = FALSE,
fullPrint = getOption("rxode2.fullPrint", FALSE),
envir = parent.frame()
)
rxode(
model,
modName = basename(wd),
wd = getwd(),
filename = NULL,
extraC = NULL,
debug = FALSE,
calcJac = NULL,
calcSens = NULL,
collapseModel = FALSE,
package = NULL,
...,
linCmtSens = c("linCmtA", "linCmtB", "linCmtC"),
indLin = FALSE,
verbose = FALSE,
fullPrint = getOption("rxode2.fullPrint", FALSE),
envir = parent.frame()
)
model |
This is the ODE model specification. It can be:
An ODE expression enclosed in (see also the |
modName |
a string to be used as the model name. This string
is used for naming various aspects of the computations,
including generating C symbol names, dynamic libraries,
etc. Therefore, it is necessary that |
wd |
character string with a working directory where to
create a subdirectory according to |
filename |
A file name or connection object where the
ODE-based model specification resides. Only one of |
extraC |
Extra c code to include in the model. This can be
useful to specify functions in the model. These C functions
should usually take |
debug |
is a boolean indicating if the executable should be compiled with verbose debugging information turned on. |
calcJac |
boolean indicating if rxode2 will calculate the Jacobain according to the specified ODEs. |
calcSens |
boolean indicating if rxode2 will calculate the sensitivities according to the specified ODEs. |
collapseModel |
boolean indicating if rxode2 will remove all LHS variables when calculating sensitivities. |
package |
Package name for pre-compiled binaries. |
... |
ignored arguments. |
linCmtSens |
The method to calculate the linCmt() solutions |
indLin |
Calculate inductive linearization matrices and compile with inductive linearization support. |
verbose |
When |
fullPrint |
When using |
envir |
is the environment to look for R user functions (defaults to parent environment) |
The Rx
in the name rxode2
is meant to suggest the
abbreviation Rx for a medical prescription, and thus to
suggest the package emphasis on pharmacometrics modeling, including
pharmacokinetics (PK), pharmacodynamics (PD), disease progression,
drug-disease modeling, etc.
The ODE-based model specification may be coded inside four places:
Inside a rxode2({})
block statements:
library(rxode2) mod <- rxode2({ # simple assignment C2 <- centr/V2 # time-derivative assignment d/dt(centr) <- F*KA*depot - CL*C2 - Q*C2 + Q*C3; })
Inside a rxode2("")
string statement:
mod <- rxode2(" # simple assignment C2 <- centr/V2 # time-derivative assignment d/dt(centr) <- F*KA*depot - CL*C2 - Q*C2 + Q*C3; ")
In a file name to be loaded by rxode2:
writeLines(" # simple assignment C2 <- centr/V2 # time-derivative assignment d/dt(centr) <- F*KA*depot - CL*C2 - Q*C2 + Q*C3; ", "modelFile.rxode2") mod <- rxode2(filename='modelFile.rxode2') unlink("modelFile.rxode2")
In a model function which can be parsed by rxode2
:
mod <- function() { model({ # simple assignment C2 <- centr/V2 # time-derivative assignment d/dt(centr) <- F*KA*depot - CL*C2 - Q*C2 + Q*C3; }) } mod <- rxode2(mod) # or simply mod() if the model is at the end of the function # These model functions often have residual components and initial # (`ini({})`) conditions attached as well. For example the # theophylline model can be written as: one.compartment <- function() { ini({ tka <- 0.45 # Log Ka tcl <- 1 # Log Cl tv <- 3.45 # Log V eta.ka ~ 0.6 eta.cl ~ 0.3 eta.v ~ 0.1 add.sd <- 0.7 }) model({ ka <- exp(tka + eta.ka) cl <- exp(tcl + eta.cl) v <- exp(tv + eta.v) d/dt(depot) = -ka * depot d/dt(center) = ka * depot - cl / v * center cp = center / v cp ~ add(add.sd) }) } # after parsing the model mod <- one.compartment()
For the block statement, character string or text file an internal
rxode2
compilation manager translates the ODE system into C, compiles
it and loads it into the R session. The call to rxode2
produces an
object of class rxode2
which consists of a list-like structure
(environment) with various member functions.
For the last type of model (a model function), a call to rxode2
creates a parsed rxode2
ui that can be translated to the rxode2
compilation model.
mod$simulationModel # or mod$simulationIniModel
This is the same type of function required for nlmixr2
estimation and
can be extended and modified by model piping. For this reason will be
focused on in the documentation.
This basic model specification consists of one or more statements
optionally terminated by semi-colons ;
and optional comments (comments
are delimited by #
and an end-of-line).
A block of statements is a set of statements delimited by curly braces,
{ ... }
.
Statements can be either assignments, conditional if
/else if
/else
,
while
loops (can be exited by break
), special statements, or
printing statements (for debugging/testing).
Assignment statements can be:
simple assignments, where the left hand is an identifier (i.e., variable). This includes string assignments
special time-derivative assignments, where the left hand specifies
the change of the amount in the corresponding state variable
(compartment) with respect to time e.g., d/dt(depot)
:
special initial-condition assignments where the left hand
specifies the compartment of the initial condition being specified,
e.g. depot(0) = 0
special model event changes including bioavailability
(f(depot)=1
), lag time (alag(depot)=0
), modeled rate
(rate(depot)=2
) and modeled duration (dur(depot)=2
). An
example of these model features and the event specification for the
modeled infusions the rxode2 data specification is found in rxode2 events vignette.
special change point syntax, or model times. These model times are
specified by mtime(var)=time
special Jacobian-derivative assignments, where the left hand
specifies the change in the compartment ode with respect to a
variable. For example, if d/dt(y) = dy
, then a Jacobian for this
compartment can be specified as df(y)/dy(dy) = 1
. There may be some
advantage to obtaining the solution or specifying the Jacobian for
very stiff ODE systems. However, for the few stiff systems we tried
with LSODA, this actually slightly slowed down the solving.
Special string value declarations which tell what values a string
variable will take within a rxode2
solving structure. These values
will then cause a factor to be created for this variable on solving
the rxode2
model. As such, they are declared in much the same way as
R
, that is: labels(a) <- c("a1", "a2")
.
Note that assignment can be done by =
, <-
or ~
.
When assigning with the ~
operator, the simple assignments and
time-derivative assignments will not be output. Note that with the
rxode2
model functions assignment with ~
can also be overloaded with
a residual distribution specification.
Special statements can be:
Compartment declaration statements, which can change the default
dosing compartment and the assumed compartment number(s) as well as
add extra compartment names at the end (useful for multiple-endpoint
nlmixr models); These are specified by cmt(compartmentName)
Parameter declaration statements, which can make sure the input
parameters are in a certain order instead of ordering the parameters
by the order they are parsed. This is useful for keeping the parameter
order the same when using 2 different ODE models. These are specified
by param(par1, par2,...)
Variable interpolation statements, which tells the interpolation
for specific covariates. These include locf(cov1, cov2, ...)
for
last observation carried forward, nocb(cov1, cov2, ...)
for next
observation carried backward, linear(cov1, cov2, ...)
for linear
interpolation and midpoint(cov1, cov2, ...)
for midpoint
interpolation.
An example model is shown below:
# simple assignment C2 <- centr/V2 # time-derivative assignment d/dt(centr) <- F*KA*depot - CL*C2 - Q*C2 + Q*C3;
Expressions in assignment and if
statements can be numeric or logical.
Numeric expressions can include the following numeric operators
+, -, *, /, ^
and those mathematical functions defined in the C or the
R math libraries (e.g., fabs
, exp
, log
, sin
, abs
).
You may also access the R’s functions in the R math libraries,
like lgammafn
for the log gamma function.
The rxode2
syntax is case-sensitive, i.e., ABC
is different than
abc
, Abc
, ABc
, etc.
Like R, Identifiers (variable names) may consist of one or more
alphanumeric, underscore _
or period .
characters, but the first
character cannot be a digit or underscore _
.
Identifiers in a model specification can refer to:
State variables in the dynamic system (e.g., compartments in a pharmacokinetics model).
Implied input variable, t
(time), tlast
(last time point), and
podo
(oral dose, in the undocumented case of absorption transit
models).
Special constants like pi
or R’s predefined constants.
Model parameters (e.g., ka
rate of absorption, CL
clearance, etc.)
Others, as created by assignments as part of the model specification; these are referred as LHS (left-hand side) variable.
Currently, the rxode2
modeling language only recognizes system state
variables and “parameters”, thus, any values that need to be passed from
R to the ODE model (e.g., age
) should be either passed in the params
argument of the integrator function rxSolve()
or be in the supplied
event data-set.
There are certain variable names that are in the rxode2
event tables.
To avoid confusion, the following event table-related items cannot be
assigned, or used as a state but can be accessed in the rxode2 code:
cmt
dvid
addl
ss
amt
dur
rate
Rprintf
print
printf
id
However the following variables are cannot be used in a model specification:
evid
ii
Sometimes rxode2 generates variables that are fed back to rxode2.
Similarly, nlmixr2 generates some variables that are used in nlmixr
estimation and simulation. These variables start with the either the
rx
or nlmixr
prefixes. To avoid any problems, it is suggested to not
use these variables starting with either the rx
or nlmixr
prefixes.
Logical operators support the standard R operators ==
, !=
>=
<=
>
and <
. Like R these can be in if()
or while()
statements,
ifelse()
expressions. Additionally they can be in a standard
assignment. For instance, the following is valid:
cov1 = covm*(sexf == "female") + covm*(sexf != "female")
Notice that you can also use character expressions in comparisons. This
convenience comes at a cost since character comparisons are slower than
numeric expressions. Unlike R, as.numeric
or as.integer
for these
logical statements is not only not needed, but will cause an syntax
error if you try to use the function.
All the supported functions in rxode2 can be seen with the
rxSupportedFuns()
.
A brief description of the built-in functions are in the following table:
Function | Description | Aliases |
gamma(x) | The Gamma function | gammafn |
lgamma(x) | Natural logarithm of absolute value of gamma function | digamma |
digamma(x) | First derivative of lgamma | |
trigamma(x) | Second derivative of lgamma | |
tetragamma(x) | Third derivative of lgamma | |
pentagamma(x) | Fourth derivative of lgamma | |
psigamma(x, deriv) | n-th derivative of Psi, the digamma function, which is the derivative of lgammafn. In other words, digamma(x) is the same as psigamma(x,0), trigamma(x) == psigamma(x,1), etc. | |
cospi(x) | cos(pi*x) | |
sinpi(x) | sin(pi*x) | |
tanpi(x) | tan(pi*x) | |
beta(a, b) | Beta function | |
lbeta(a, b) | log Beta function | |
bessel_i(x, nu, expo) | Bessel function type I with index nu | expo==1 is unscaled expo==2 is scaled by exp(-x) |
bessel_j(x, nu) | Bessel function type J with index nu | |
bessel_k(x, ku, expo) | Bessel function type K with index nu | expo==1 is unscaled expo==2 is scaled by exp(x) |
bessel_y(x, nu) | Bessel function type Y with index nu | |
R_pow(x, y) | x^y | |
R_pow_di(x, I) | x^y | y is an integer |
log1pmx | log(1+x) - x | |
log1pexp | log(1+exp(x)) | |
expm1(x) | exp(x)-1 | |
lgamma1p(x) | log(gamma(x+1)) | |
sign(x) | Compute the signum function where sign(x) is 1, 0 -1 | |
fsign(x, y) | abs(x)*sign(y) | |
fprec(x, digits) | x rounded to digits (after the decimal point, used by signif() | |
fround(x, digits) | Round, used by R’s round() | |
ftrunc(x) | Truncated towards zero | |
abs(x) | absolute value of x | fabs |
sin(x) | sine of x | |
cos(x) | cos of x | |
tan(x) | tan of x | |
factorial(x) | factorial of x | |
lfactorial(x) | log(factorial(x)) | |
log10(x) | log base 10 | |
log2(x) | log base 2 | |
pnorm(x) | Normal CDF of x | normcdf, phi |
qnorm(x) | Normal pdf of x | norminv |
probit(x, low=0, hi=1) | Probit (normal pdf) of x transforming into a range | |
probitInv(q, low=0, hi=1) | Inverse probit of x transforming into a range | |
acos(x) | Inverse cosine | |
asin(x) | Inverse sine | |
atan(x) | Inverse tangent | |
atan2(a, b) | Four quadrant inverse tangent | |
sinh(x) | Hyperbolic sine | |
cosh(x) | Hyperbolic cosine | |
tanh(x) | Hyperbolic tangent | |
floor(x) | Downward rounding | |
ceil(x) | Upward rounding | |
logit(x, low=0, hi=1) | Logit transformation of x transforming into a range | |
expit(x, low=0, hi=1) | expit transofmration in range | invLogit, logitInv |
gammaq(a, z) | Normalized incomplete gamma from boost | |
gammaqInv(a, q) | Normalized incomplete gamma inverse from boost | |
ifelse(cond, trueValue, falseValue) | if else function | |
gammap(a, z) | Normalized lower incomplete gamma from boost | |
gammapInv(a, p) | Inverse of Normalized lower incomplete gamma from boost | |
gammapInva(x, p) | Inverse of Normalized lower incomplete gamma from boost | |
rxnorm(x) | Generate one deviate of from a normal distribution for each observation scale | |
rxnormV(x) | Generate one deviate from low discrepancy normal for each observation | |
rxcauchy | Generate one deviate from the cauchy distribution for each observation | |
rxchisq | Generate one deviate from the chisq distribution for each observation | |
rxexp | Generate one deviate from the exponential distribution for each observation | |
rxf | Generate one deviate from low discrepancy normal for each observation | |
rxgamma | Generate one deviate from the gamma distribution for each observation | |
rxbeta | Generate one deviate from the beta distribution for each observation | |
rxgeom | Generate one deviate from the geometric distribution for each observation | |
rxpois | Generate one deviate from the poission distribution for each observation | |
rxt | Generate one deviate from the t distribtuion for each observation | |
tad() or tad(x) | Time after dose (tad()) or time after dose for a compartment tad(cmt); no dose=NA | |
tad0() or tad0(x) | Time after dose (tad0()) or time after dose for a compartment tad0(cmt); no dose=0 | |
tafd() or tafd(x) | Time after first dose (tafd()) or time after first dose for a compartment tafd(cmt); no dose=NA | |
tafd0() or tafd0(x) | Time after first dose (tafd()) or time after first dose for a compartment tafd(cmt); no dose=NA | |
dosenum() | Dose Number | |
tlast() or tlast(cmt) | Time of Last dose; This takes into consideration any lag time, so if there is a dose at time 3 and a lag of 1, the time of last dose would be 4. tlast(cmt) calculates the time since last dose of a compartment; no dose=NA | |
tlast0() or tlast0(cmt) | Time of Last dose; This takes into consideration any lag time, so if there is a dose at time 3 and a lag of 1, the time of last dose would be 4. tlast(cmt) calculates the time since last dose of a compartment; no dose=0 | |
tfirst() or tfirst(cmt) | Time since first dose or time since first dose of a compartment; no dose=NA | |
tfirst0() or tfirst0(cmt) | Time since first dose or time since first dose of a compartment; no dose=0 | |
prod(…) | product of terms; This uses PreciseSums so the product will not have as much floating point errors (though it will take longer) | |
sum(…) | sum of terms; This uses PreciseSums so the product will not have as much floating point errors (though it will take longer) | |
max(…) | maximum of a group of numbers | |
min(…) | Min of a group of numbers | |
lag(parameter, number=1) | Get the lag of an input parameter; You can specify a number of lagged observations | |
lead(parameter, number=2) | Get the lead of an input parameter; You can specify a number of lead observation | |
diff(par, number=1) | Get the difference between the current parameter and the last parameter; Can change the parameter number | |
first(par) | Get the first value of an input parameter | |
last(par) | Get the last value of an input parameter | |
transit() | The transit compartment psuedo function | |
is.na() | Determine if a value is NA | |
is.nan() | Determine if a value is NaN | |
is.infinite() | Check to see if the value is infinite | |
rinorm(x) | Generate one deviate of from a normal distribution for each individual | |
rinormV(x) | Generate one deviate from low discrepancy normal for each individual | |
ricauchy | Generate one deviate from the cauchy distribution for each individual | |
richisq | Generate one deviate from the chisq distribution for each individual | |
riexp | Generate one deviate from the exponential distribution for each individual | |
rif | Generate one deviate from low discrepancy normal for each individual | |
rigamma | Generate one deviate from the gamma distribution for each individual | |
ribeta | Generate one deviate from the beta distribution for each individual | |
rigeom | Generate one deviate from the geometric distribution for each individual | |
ropois | Generate one deviate from the poission distribution for each individual | |
rit | Generate one deviate from the t distribtuion for each individual | |
simeps | Simulate EPS from possibly truncated sigma matrix. Will take sigma matrix from the current study. Simulated at the very last moment. | |
simeta | Simulate ETA from possibly truncated omega matrix. Will take the omega matrix from the current study. Simulated at the initilization of the ODE system or the intialization of lhs | |
Note that lag(cmt) =
is equivalent to alag(cmt) =
and not the same
as = lag(wt)
There are a few reserved keywords in a rxode2 model. They are in the following table:
Reserved Name | Meaning | Alias |
time | solver time | t |
podo | In Transit compartment models, last dose amount | |
tlast | Time of Last dose | |
M_E | Exp(1) | |
M_LOG2E | log2(e) | |
M_LOG10E | log10(e) | |
M_LN2 | log(2) | |
M_LN10 | log(10) | |
M_PI | pi | |
M_PI_2 | pi/2 | |
M_PI_4 | pi/4 | |
M_1_PI | 1/pi | |
M_2_PI | 2/pi | |
M_2_SQRTPI | 2/sqrt(pi) | |
M_SQRT2 | sqrt(2) | |
M_SQRT1_2 | 1/sqrt(2) | |
M_SQRT_3 | sqrt(3) | |
M_SQRT_32 | sqrt(32) | |
M_LOG10_2 | Log10(2) | |
M_2PI | 2*pi | |
M_SQRT_PI | sqrt(pi) | |
M_1_SQRT_2PI | 1/(sqrt(2*pi)) | |
M_LN_SQRT_PI | log(sqrt(pi)) | |
M_LN_SQRT_2PI | log(sqrt(2*pi)) | |
M_LN_SQRT_PId2 | log(sqrt(pi/2)) | |
pi | pi | |
NA | R’s NA value | |
NaN | Not a Number Value | |
Inf | Infinite Value | |
newind | 1: First record of individual; 2: Subsequent record of individual | NEWIND |
rxFlag | Flag for what part of the rxode2 model is being run; 1: ddt; 2: jac; 3: ini; 4: F; 5: lag; 6: rate; 7: dur; 8: mtime; 9: matrix exponential; 10: inductive linearization; 11: lhs | |
Note that rxFlag
will always output 11
or calc_lhs
since that is
where the final variables are calculated, though you can tweak or test
certain parts of rxode2
by using this flag.
In addition to ~
hiding output for certain types of output, it also is
used to specify a residual output or endpoint when the input is an
rxode2
model function (that includes the residual in the model({})
block).
These specifications are of the form:
var ~ add(add.sd)
Indicating the variable var
is the variable that represents the
individual central tendencies of the model and it also represents the
compartment specification in the data-set.
You can also change the compartment name using the |
syntax, that is:
var ~ add(add.sd) | cmt
In the above case var
represents the central tendency and cmt
represents the compartment or dvid
specification.
For normal and related distributions, you can apply the transformation on both sides by using some keywords/functions to apply these transformations.
Transformation | rxode2/nlmixr2 code |
Box-Cox | +boxCox(lambda) |
Yeo-Johnson | +yeoJohnson(lambda) |
logit-normal | +logitNorm(logit.sd, low, hi) |
probit-normal | +probitNorm(probid.sd, low, hi) |
log-normal | +lnorm(lnorm.sd) |
By default for the likelihood for all of these transformations is calculated on the untransformed scale.
For bounded variables like logit-normal or probit-normal the low and high values are defaulted to 0 and 1 if missing.
For models where you wish to have a proportional model on one of these
transformation you can replace the standard deviation with NA
To allow for more transformations, lnorm()
, probitNorm()
and
logitNorm()
can be combined the variance stabilizing yeoJohnson()
transformation.
For the normal and t-related distributions, we wanted to keep the
ability to use skewed distributions additive and proportional in the
t/cauchy-space, so these distributions are specified differently in
comparison to the other supported distributions within nlmixr2
:
Distribution | How to Add | Example |
Normal (log-likelihood) | +dnorm() | cc ~ add(add.sd) + dnorm() |
T-distribution | +dt(df) | cc ~a dd(add.sd) + dt(df) |
Cauchy (t with df=1) | +dcauchy() | cc ~ add(add.sd) + dcauchy() |
Note that with the normal and t-related distributions nlmixr2
will
calculate cwres
and npde
under the normal assumption to help assess
the goodness of the fit of the model.
Also note that the +dnorm()
is mostly for testing purposes and will
slow down the estimation procedure in nlmixr2
. We suggest not adding
it (except for explicit testing). When there are multiple endpoint
models that mix non-normal and normal distributions, the whole problem
is shifted to a log-likelihood method for estimation in nlmixr2
.
There are two different ways to specify additive and proportional models, which we will call combined1 and combined2, the same way that Monolix calls the two distributions (to avoid between software differences in naming).
The first, combined1, assumes that the additive and proportional differences are on the standard deviation scale, or:
y=f+(a+b* f^c)*err
The second, combined2, assumes that the additive and proportional differences are combined on a variance scale:
y=f+$$sqrt(a^2+b^2 *f^(2c))$$*err
The default in nlmixr2
/rxode2
if not otherwise specified is
combined2 since it mirrors how adding 2 normal distributions in
statistics will add their variances (not the standard deviations).
However, the combined1 can describe the data possibly even better
than combined2 so both are possible options in rxode2
/nlmixr2
.
For residuals that are not related to normal, t-distribution or cauchy, often the residual specification is of the form:
cmt ~ dbeta(alpha, beta)
Where the compartment specification is on the left handed side of the specification.
For generalized likelihood you can specify:
ll(cmt) ~ llik specification
Finally, ordinal likelihoods/simulations can be specified in 2 ways. The first is:
err ~ c(p0, p1, p2)
Here err
represents the compartment and p0
is the probability of
being in a specific category:
Category | Probability |
1 | p0 |
2 | p1 |
3 | p2 |
4 | 1-p0-p1-p2 |
It is up to the model to ensure that the sum of the p
values are less
than 1
. Additionally you can write an arbitrary number of categories
in the ordinal model described above.
It seems a little off that p0
is the probability for category 1
and
sometimes scores are in non-whole numbers. This can be modeled as
follows:
err ~ c(p0=0, p1=1, p2=2, 3)
Here the numeric categories are specified explicitly, and the probabilities remain the same:
Category | Probability |
0 | p0 |
1 | p1 |
2 | p2 |
3 | 1-p0-p1-p2 |
In general all the that are supported are in the following table
(available in rxode2::rxResidualError
)
Error model | Functional Form | Transformation | code | addProp | lhs |
constant | None | var ~ add(add.sd) | response variable | ||
proportional | None | var ~ prop(prop.sd) | response variable | ||
power | None | var ~ pow(pow.sd, exponent) | response variable | ||
additive+proportional | combined1 | None | var ~ add(add.sd) + prop(prop.sd) + combined1() | addProp=1 | response variable |
additive+proportional | combined2 | None | var ~ add(add.sd) + prop(prop.sd) + combined2() | addProp=2 | response variable |
additive+power | combined1 | None | var ~ add(add.sd) + pow(pow.sd, exponent) + combined1() | addProp=1 | response variable |
additive+power | combined2 | None | var ~ add(add.sd) + pow(pow.sd, exponent) + combined2() | addProp=2 | response variable |
constant | log | var ~ lnorm(add.sd) | response variable | ||
proportional | log | var ~ lnorm(NA) + prop(prop.sd) | response variable | ||
power | log | var ~ lnorm(NA) + pow(pow.sd, exponent) | response variable | ||
additive+proportional | combined1 | log | var ~ lnorm(add.sd) + prop(prop.sd) + combined1() | addProp=1 | response variable |
additive+proportional | combined2 | log | var ~ lnorm(add.sd) + prop(prop.sd) + combined2() | addProp=2 | response variable |
additive+power | combined1 | log | var ~ lnorm(add.sd) + pow(pow.sd, exponent) + combined1() | addProp=1 | response variable |
additive+power | combined2 | log | var ~ lnorm(add.sd) + pow(pow.sd, exponent) + combined2() | addProp=2 | response variable |
constant | boxCox | var ~ boxCox(lambda) + add(add.sd) | response variable | ||
proportional | boxCox | var ~ boxCox(lambda) + prop(prop.sd) | response variable | ||
power | boxCox | var ~ boxCox(lambda) + pow(pow.sd, exponent) | response variable | ||
additive+proportional | combined1 | boxCox | var ~ boxCox(lambda) + add(add.sd) + prop(prop.sd) + combined1() | addProp=1 | response variable |
additive+proportional | combined2 | boxCox | var ~ boxCox(lambda) + add(add.sd) + prop(prop.sd) + combined2() | addProp=2 | response variable |
additive+power | combined1 | boxCox | var ~ boxCox(lambda) + add(add.sd) + pow(pop.sd, exponent) + combined1() | addProp=1 | response variable |
additive+power | combined2 | boxCox | var ~ boxCox(lambda) + add(add.sd) + pow(pop.sd, exponent) + combined2() | addProp=2 | response variable |
constant | yeoJohnson | var ~ yeoJohnson(lambda) + add(add.sd) | response variable | ||
proportional | yeoJohnson | var ~ yeoJohnson(lambda) + prop(prop.sd) | response variable | ||
power | yeoJohnson | var ~ yeoJohnson(lambda) + pow(pow.sd, exponent) | response variable | ||
additive+proportional | combined1 | yeoJohnson | var ~ yeoJohnson(lambda) + add(add.sd) + prop(prop.sd) + combined1() | addProp=1 | response variable |
additive+proportional | combined2 | yeoJohnson | var ~ yeoJohnson(lambda) + add(add.sd) + prop(prop.sd) + combined2() | addProp=2 | response variable |
additive+power | combined1 | yeoJohnson | var ~ yeoJohnson(lambda) + add(add.sd) + pow(pop.sd, exponent) + combined1() | addProp=1 | response variable |
additive+power | combined2 | yeoJohnson | var ~ yeoJohnson(lambda) + add(add.sd) + pow(pop.sd, exponent) + combined2() | addProp=2 | response variable |
constant | logit | var ~ logitNorm(logit.sd) | response variable | ||
proportional | logit | var ~ logitNorm(NA) + prop(prop.sd) | response variable | ||
power | logit | var ~ logitNorm(NA) + pow(pow.sd, exponent) | response variable | ||
additive+proportional | combined1 | logit | var ~ logitNorm(logit.sd) + prop(prop.sd) | addProp=1 | response variable |
additive+proportional | combined2 | logit | var ~ logitNorm(logit.sd) + prop(prop.sd) | addProp=2 | response variable |
additive+power | combined1 | logit | var ~ logitNorm(logit.sd) + pow(pow.sd, exponent) | addProp=1 | response variable |
additive+power | combined2 | logit | var ~ logitNorm(logit.sd) + pow(pow.sd, exponent) | addProp=2 | response variable |
additive | yeoJohnson(logit()) | var ~ yeoJohnson(lambda) + logitNorm(logit.sd) | response variable | ||
proportional | yeoJohnson(logit()) | var ~ yeoJohnson(lambda) + logitNorm(NA) + prop(prop.sd) | response variable | ||
power | yeoJohnson(logit()) | var ~ yeoJohnson(lambda) + logitNorm(NA) + pow(pow.sd, exponent) | response variable | ||
additive+proportional | combined1 | yeoJohnson(logit()) | var ~ yeoJohnson(lambda) + logitNorm(logit.sd) + prop(prop.sd) | addProp=1 | response variable |
additive+proportional | combined2 | yeoJohnson(logit()) | var ~ yeoJohnson(lambda) + logitNorm(logit.sd) + prop(prop.sd) | addProp=2 | response variable |
additive+power | combined1 | yeoJohnson(logit()) | var ~ yeoJohnson(lambda) + logitNorm(logit.sd) + pow(pow.sd, exponent) | addProp=1 | response variable |
additive+power | combined2 | yeoJohnson(logit()) | var ~ yeoJohnson(lambda) + logitNorm(logit.sd) + pow(pow.sd, exponent) | addProp=2 | response variable |
constant | logit | var ~ probitNorm(probit.sd) | response variable | ||
proportional | probit | var ~ probitNorm(NA) + prop(prop.sd) | response variable | ||
power | probit | var ~ probitNorm(NA) + pow(pow.sd, exponent) | response variable | ||
additive+proportional | combined1 | probit | var ~ probitNorm(probit.sd) + prop(prop.sd) + combined1() | addProp=1 | response variable |
additive+proportional | combined2 | probit | var ~ probitNorm(probit.sd) + prop(prop.sd) + combined2() | addProp=2 | response variable |
additive+power | combined1 | probit | var ~ probitNorm(probit.sd) + pow(pow.sd, exponent) + combined1() | addProp=1 | response variable |
additive+power | combined2 | probit | var ~ probitNorm(probit.sd) + pow(pow.sd, exponent) + combined2() | addProp=2 | response variable |
additive | yeoJohnson(probit()) | var ~ yeoJohnson(lambda) + probitNorm(probit.sd) | response variable | ||
proportional | yeoJohnson(probit()) | var ~ yeoJohnson(lambda) + probitNorm(NA) + prop(prop.sd) | response variable | ||
power | yeoJohnson(probit()) | var ~ yeoJohnson(lambda) + probitNorm(NA) + pow(pow.sd, exponent) | response variable | ||
additive+proportional | combined1 | yeoJohnson(probit()) | var ~ yeoJohnson(lambda) + probitNorm(probit.sd) + prop(prop.sd) + combined1() | addProp=1 | response variable |
additive+proportional | combined2 | yeoJohnson(probit()) | var ~ yeoJohnson(lambda) + probitNorm(probit.sd) + prop(prop.sd) + combined2() | addProp=2 | response variable |
additive+power | combined1 | yeoJohnson(probit()) | var ~ yeoJohnson(lambda) + probitNorm(probit.sd) + pow(pow.sd, exponent) + combined1() | addProp=1 | response variable |
additive+power | combined2 | yeoJohnson(probit()) | var ~ yeoJohnson(lambda) + probitNorm(probit.sd) + pow(pow.sd, exponent) + combined2() | addProp=2 | response variable |
constant+t | None | var ~ add(add.sd) + dt(df) | response variable | ||
proportional+t | None | var ~ prop(prop.sd) + dt(df) | response variable | ||
power+t | None | var ~ pow(pow.sd, exponent) + dt(df) | response variable | ||
additive+proportional+t | combined1 | None | var ~ add(add.sd) + prop(prop.sd) + dt(df) + combined1() | addProp=1 | response variable |
additive+proportional+t | combined2 | None | var ~ add(add.sd) + prop(prop.sd) + dt(df) + combined2() | addProp=2 | response variable |
additive+power+t | combined1 | None | var ~ add(add.sd) + pow(pow.sd, exponent) + dt(df) +combined1() | addProp=1 | response variable |
additive+power+t | combined2 | None | var ~ add(add.sd) + pow(pow.sd, exponent) + dt(df) +combined2() | addProp=2 | response variable |
constant+t | log | var ~ lnorm(add.sd) + dt(df) | response variable | ||
proportional+t | log | var ~ lnorm(NA) + prop(prop.sd) + dt(df) | response variable | ||
power+t | log | var ~ lnorm(NA) + pow(pow.sd, exponent) + dt(df) | response variable | ||
additive+proportional+t | combined1 | log | var ~ lnorm(add.sd) + prop(prop.sd) + dt(df) +combined1() | addProp=1 | response variable |
additive+proportional+t | combined2 | log | var ~ lnorm(add.sd) + prop(prop.sd) + dt(df) + combined2() | addProp=2 | response variable |
additive+power+t | combined1 | log | var ~ lnorm(add.sd) + pow(pow.sd, exponent) + dt(df) + combined1() | addProp=1 | response variable |
additive+power+t | combined2 | log | var ~ lnorm(add.sd) + pow(pow.sd, exponent) + dt(df) + combined2() | addProp=2 | response variable |
constant+t | boxCox | var ~ boxCox(lambda) + add(add.sd)+dt(df) | response variable | ||
proportional+t | boxCox | var ~ boxCox(lambda) + prop(prop.sd)+dt(df) | response variable | ||
power+t | boxCox | var ~ boxCox(lambda) + pow(pow.sd, exponent)+dt(df) | response variable | ||
additive+proportional+t | combined1 | boxCox | var ~ boxCox(lambda) + add(add.sd) + prop(prop.sd) + dt(df) + combined1() | addProp=1 | response variable |
additive+proportional+t | combined2 | boxCox | var ~ boxCox(lambda) + add(add.sd) + prop(prop.sd) + dt(df) + combined2() | addProp=2 | response variable |
additive+power+t | combined1 | boxCox | var ~ boxCox(lambda) + add(add.sd) + pow(pop.sd, exponent) + dt(df) + combined1() | addProp=1 | response variable |
additive+power+t | combined2 | boxCox | var ~ boxCox(lambda) + add(add.sd) + pow(pop.sd, exponent) + dt(df) + combined2() | addProp=2 | response variable |
constant+t | yeoJohnson | var ~ yeoJohnson(lambda) + add(add.sd) + dt(df) | response variable | ||
proportional+t | yeoJohnson | var ~ yeoJohnson(lambda) + prop(prop.sd) + dt(df) | response variable | ||
power+t | yeoJohnson | var ~ yeoJohnson(lambda) + pow(pow.sd, exponent) + dt(df) | response variable | ||
additive+proportional+t | combined1 | yeoJohnson | var ~ yeoJohnson(lambda) + add(add.sd) + prop(prop.sd) + dt(df) + combined1() | addProp=1 | response variable |
additive+proportional+t | combined2 | yeoJohnson | var ~ yeoJohnson(lambda) + add(add.sd) + prop(prop.sd) + dt(df) + combined2() | addProp=2 | response variable |
additive+power+t | combined1 | yeoJohnson | var ~ yeoJohnson(lambda) + add(add.sd) + pow(pop.sd, exponent) + dt(df) + combined1() | addProp=1 | response variable |
additive+power+t | combined2 | yeoJohnson | var ~ yeoJohnson(lambda) + add(add.sd) + pow(pop.sd, exponent) + dt(df) + combined2() | addProp=2 | response variable |
constant+t | logit | var ~ logitNorm(logit.sd)+dt(df) | response variable | ||
proportional+t | logit | var ~ logitNorm(NA) + prop(prop.sd)+dt(df) | response variable | ||
power+t | logit | var ~ logitNorm(NA) + pow(pow.sd, exponent) + dt(df) | response variable | ||
additive+proportional+t | combined1 | logit | var ~ logitNorm(logit.sd) + prop(prop.sd) + dt(df) + combined1() | addProp=1 | response variable |
additive+proportional+t | combined2 | logit | var ~ logitNorm(logit.sd) + prop(prop.sd) + dt(df) + combined2() | addProp=2 | response variable |
additive+power+t | combined1 | logit | var ~ logitNorm(logit.sd) + pow(pow.sd, exponent) + dt(df) + combined1() | addProp=1 | response variable |
additive+power+t | combined2 | logit | var ~ logitNorm(logit.sd) + pow(pow.sd, exponent) + dt(df) + combined2() | addProp=2 | response variable |
additive+t | yeoJohnson(logit()) | var ~ yeoJohnson(lambda) + logitNorm(logit.sd) + dt(df) | response variable | ||
proportional+t | yeoJohnson(logit()) | var ~ yeoJohnson(lambda) + logitNorm(NA) + prop(prop.sd) + dt(df) | response variable | ||
power+t | yeoJohnson(logit()) | var ~ yeoJohnson(lambda) + logitNorm(NA) + pow(pow.sd, exponent) + dt(df) | response variable | ||
additive+proportional+t | combined1 | yeoJohnson(logit()) | var ~ yeoJohnson(lambda) + logitNorm(logit.sd) + prop(prop.sd) + dt(df) + combined1() | addProp=1 | response variable |
additive+proportional+t | combined2 | yeoJohnson(logit()) | var ~ yeoJohnson(lambda) + logitNorm(logit.sd) + prop(prop.sd) + dt(df) + combined2() | addProp=2 | response variable |
additive+power+t | combined1 | yeoJohnson(logit()) | var ~ yeoJohnson(lambda) + logitNorm(logit.sd) + pow(pow.sd, exponent) + dt(df) + combined1() | addProp=1 | response variable |
additive+power+t | combined2 | yeoJohnson(logit()) | var ~ yeoJohnson(lambda) + logitNorm(logit.sd) + pow(pow.sd, exponent) + dt(df) + combined2() | addProp=2 | response variable |
constant+t | logit | var ~ probitNorm(probit.sd) + dt(df) | response variable | ||
proportional+t | probit | var ~ probitNorm(NA) + prop(prop.sd) + dt(df) | response variable | ||
power+t | probit | var ~ probitNorm(NA) + pow(pow.sd, exponent) + dt(df) | response variable | ||
additive+proportional+t | combined1 | probit | var ~ probitNorm(probit.sd) + prop(prop.sd) + dt(df) + combined1() | addProp=1 | response variable |
additive+proportional+t | combined2 | probit | var ~ probitNorm(probit.sd) + prop(prop.sd) + dt(df) + combined2() | addProp=2 | response variable |
additive+power+t | combined1 | probit | var ~ probitNorm(probit.sd) + pow(pow.sd, exponent) + dt(df) + combined1() | addProp=1 | response variable |
additive+power+t | combined2 | probit | var ~ probitNorm(probit.sd) + pow(pow.sd, exponent) + dt(df) + combined2() | addProp=2 | response variable |
additive+t | yeoJohnson(probit()) | var ~ yeoJohnson(lambda) + probitNorm(probit.sd) + dt(df) | response variable | ||
proportional+t | yeoJohnson(probit()) | var ~ yeoJohnson(lambda) + probitNorm(NA) + prop(prop.sd) + dt(df) | response variable | ||
power+t | yeoJohnson(probit()) | var ~ yeoJohnson(lambda) + probitNorm(NA) + pow(pow.sd, exponent) + dt(df) | response variable | ||
additive+proportional+t | combined1 | yeoJohnson(probit()) | var ~ yeoJohnson(lambda) + probitNorm(probit.sd) + prop(prop.sd) + dt(df) + combined1() | addProp=1 | response variable |
additive+proportional+t | combined2 | yeoJohnson(probit()) | var ~ yeoJohnson(lambda) + probitNorm(probit.sd) + prop(prop.sd) + dt(df) + combined2() | addProp=2 | response variable |
additive+power+t | combined1 | yeoJohnson(probit()) | var ~ yeoJohnson(lambda) + probitNorm(probit.sd) + pow(pow.sd, exponent) + dt(df) + combined1() | addProp=1 | response variable |
additive+power+t | combined2 | yeoJohnson(probit()) | var ~ yeoJohnson(lambda) + probitNorm(probit.sd) + pow(pow.sd, exponent) + dt(df) +combined2() | addProp=2 | response variable |
constant+cauchy | None | var ~ add(add.sd) + dcauchy() | response variable | ||
proportional+cauchy | None | var ~ prop(prop.sd) + dcauchy() | response variable | ||
power+cauchy | None | var ~ pow(pow.sd, exponent) + dcauchy() | response variable | ||
additive+proportional+cauchy | combined1 | None | var ~ add(add.sd) + prop(prop.sd) + dcauchy() + combined1() | addProp=1 | response variable |
additive+proportional+cauchy | combined2 | None | var ~ add(add.sd) + prop(prop.sd) + dcauchy() + combined2() | addProp=2 | response variable |
additive+power+cauchy | combined1 | None | var ~ add(add.sd) + pow(pow.sd, exponent) + dcauchy() +combined1() | addProp=1 | response variable |
additive+power+cauchy | combined2 | None | var ~ add(add.sd) + pow(pow.sd, exponent) + dcauchy() +combined2() | addProp=2 | response variable |
constant+cauchy | log | var ~ lnorm(add.sd) + dcauchy() | response variable | ||
proportional+cauchy | log | var ~ lnorm(NA) + prop(prop.sd) + dcauchy() | response variable | ||
power+cauchy | log | var ~ lnorm(NA) + pow(pow.sd, exponent) + dcauchy() | response variable | ||
additive+proportional+cauchy | combined1 | log | var ~ lnorm(add.sd) + prop(prop.sd) + dcauchy() +combined1() | addProp=1 | response variable |
additive+proportional+cauchy | combined2 | log | var ~ lnorm(add.sd) + prop(prop.sd) + dcauchy() + combined2() | addProp=2 | response variable |
additive+power+cauchy | combined1 | log | var ~ lnorm(add.sd) + pow(pow.sd, exponent) + dcauchy() + combined1() | addProp=1 | response variable |
additive+power+cauchy | combined2 | log | var ~ lnorm(add.sd) + pow(pow.sd, exponent) + dcauchy() + combined2() | addProp=2 | response variable |
constant+cauchy | boxCox | var ~ boxCox(lambda) + add(add.sd)+dcauchy() | response variable | ||
proportional+cauchy | boxCox | var ~ boxCox(lambda) + prop(prop.sd)+dcauchy() | response variable | ||
power+cauchy | boxCox | var ~ boxCox(lambda) + pow(pow.sd, exponent)+dcauchy() | response variable | ||
additive+proportional+cauchy | combined1 | boxCox | var ~ boxCox(lambda) + add(add.sd) + prop(prop.sd) + dcauchy() + combined1() | addProp=1 | response variable |
additive+proportional+cauchy | combined2 | boxCox | var ~ boxCox(lambda) + add(add.sd) + prop(prop.sd) + dcauchy() + combined2() | addProp=2 | response variable |
additive+power+cauchy | combined1 | boxCox | var ~ boxCox(lambda) + add(add.sd) + pow(pop.sd, exponent) + dcauchy() + combined1() | addProp=1 | response variable |
additive+power+cauchy | combined2 | boxCox | var ~ boxCox(lambda) + add(add.sd) + pow(pop.sd, exponent) + dcauchy() + combined2() | addProp=2 | response variable |
constant+cauchy | yeoJohnson | var ~ yeoJohnson(lambda) + add(add.sd) + dcauchy() | response variable | ||
proportional+cauchy | yeoJohnson | var ~ yeoJohnson(lambda) + prop(prop.sd) + dcauchy() | response variable | ||
power+cauchy | yeoJohnson | var ~ yeoJohnson(lambda) + pow(pow.sd, exponent) + dcauchy() | response variable | ||
additive+proportional+cauchy | combined1 | yeoJohnson | var ~ yeoJohnson(lambda) + add(add.sd) + prop(prop.sd) + dcauchy() + combined1() | addProp=1 | response variable |
additive+proportional+cauchy | combined2 | yeoJohnson | var ~ yeoJohnson(lambda) + add(add.sd) + prop(prop.sd) + dcauchy() + combined2() | addProp=2 | response variable |
additive+power+cauchy | combined1 | yeoJohnson | var ~ yeoJohnson(lambda) + add(add.sd) + pow(pop.sd, exponent) + dcauchy() + combined1() | addProp=1 | response variable |
additive+power+cauchy | combined2 | yeoJohnson | var ~ yeoJohnson(lambda) + add(add.sd) + pow(pop.sd, exponent) + dcauchy() + combined2() | addProp=2 | response variable |
constant+cauchy | logit | var ~ logitNorm(logit.sd)+dcauchy() | response variable | ||
proportional+cauchy | logit | var ~ logitNorm(NA) + prop(prop.sd)+dcauchy() | response variable | ||
power+cauchy | logit | var ~ logitNorm(NA) + pow(pow.sd, exponent) + dcauchy() | response variable | ||
additive+proportional+cauchy | combined1 | logit | var ~ logitNorm(logit.sd) + prop(prop.sd) + dcauchy() + combined1() | addProp=1 | response variable |
additive+proportional+cauchy | combined2 | logit | var ~ logitNorm(logit.sd) + prop(prop.sd) + dcauchy() + combined2() | addProp=2 | response variable |
additive+power+cauchy | combined1 | logit | var ~ logitNorm(logit.sd) + pow(pow.sd, exponent) + dcauchy() + combined1() | addProp=1 | response variable |
additive+power+cauchy | combined2 | logit | var ~ logitNorm(logit.sd) + pow(pow.sd, exponent) + dcauchy() + combined2() | addProp=2 | response variable |
additive+cauchy | yeoJohnson(logit()) | var ~ yeoJohnson(lambda) + logitNorm(logit.sd) + dcauchy() | response variable | ||
proportional+cauchy | yeoJohnson(logit()) | var ~ yeoJohnson(lambda) + logitNorm(NA) + prop(prop.sd) + dcauchy() | response variable | ||
power+cauchy | yeoJohnson(logit()) | var ~ yeoJohnson(lambda) + logitNorm(NA) + pow(pow.sd, exponent) + dcauchy() | response variable | ||
additive+proportional+cauchy | combined1 | yeoJohnson(logit()) | var ~ yeoJohnson(lambda) + logitNorm(logit.sd) + prop(prop.sd) + dcauchy() + combined1() | addProp=1 | response variable |
additive+proportional+cauchy | combined2 | yeoJohnson(logit()) | var ~ yeoJohnson(lambda) + logitNorm(logit.sd) + prop(prop.sd) + dcauchy() + combined2() | addProp=2 | response variable |
additive+power+cauchy | combined1 | yeoJohnson(logit()) | var ~ yeoJohnson(lambda) + logitNorm(logit.sd) + pow(pow.sd, exponent) + dcauchy() + combined1() | addProp=1 | response variable |
additive+power+cauchy | combined2 | yeoJohnson(logit()) | var ~ yeoJohnson(lambda) + logitNorm(logit.sd) + pow(pow.sd, exponent) + dcauchy() + combined2() | addProp=2 | response variable |
constant+cauchy | logit | var ~ probitNorm(probit.sd) + dcauchy() | response variable | ||
proportional+cauchy | probit | var ~ probitNorm(NA) + prop(prop.sd) + dcauchy() | response variable | ||
power+cauchy | probit | var ~ probitNorm(NA) + pow(pow.sd, exponent) + dcauchy() | response variable | ||
additive+proportional+cauchy | combined1 | probit | var ~ probitNorm(probit.sd) + prop(prop.sd) + dcauchy() + combined1() | addProp=1 | response variable |
additive+proportional+cauchy | combined2 | probit | var ~ probitNorm(probit.sd) + prop(prop.sd) + dcauchy() + combined2() | addProp=2 | response variable |
additive+power+cauchy | combined1 | probit | var ~ probitNorm(probit.sd) + pow(pow.sd, exponent) + dcauchy() + combined1() | addProp=1 | response variable |
additive+power+cauchy | combined2 | probit | var ~ probitNorm(probit.sd) + pow(pow.sd, exponent) + dcauchy() + combined2() | addProp=2 | response variable |
additive+cauchy | yeoJohnson(probit()) | var ~ yeoJohnson(lambda) + probitNorm(probit.sd) + dcauchy() | response variable | ||
proportional+cauchy | yeoJohnson(probit()) | var ~ yeoJohnson(lambda) + probitNorm(NA) + prop(prop.sd) + dcauchy() | response variable | ||
power+cauchy | yeoJohnson(probit()) | var ~ yeoJohnson(lambda) + probitNorm(NA) + pow(pow.sd, exponent) + dcauchy() | response variable | ||
additive+proportional+cauchy | combined1 | yeoJohnson(probit()) | var ~ yeoJohnson(lambda) + probitNorm(probit.sd) + prop(prop.sd) + dcauchy() + combined1() | addProp=1 | response variable |
additive+proportional+cauchy | combined2 | yeoJohnson(probit()) | var ~ yeoJohnson(lambda) + probitNorm(probit.sd) + prop(prop.sd) + dcauchy() + combined2() | addProp=2 | response variable |
additive+power+cauchy | combined1 | yeoJohnson(probit()) | var ~ yeoJohnson(lambda) + probitNorm(probit.sd) + pow(pow.sd, exponent) + dcauchy() + combined1() | addProp=1 | response variable |
additive+power+cauchy | combined2 | yeoJohnson(probit()) | var ~ yeoJohnson(lambda) + probitNorm(probit.sd) + pow(pow.sd, exponent) + dcauchy() +combined2() | addProp=2 | response variable |
poission | none | cmt ~ dpois(lamba) | compartment specification | ||
binomial | none | cmt ~ dbinom(n, p) | compartment specification | ||
beta | none | cmt ~ dbeta(alpha, beta) | compartment specification | ||
chisq | none | cmt ~ dchisq(nu) | compartment specification | ||
exponential | none | cmt ~ dexp(r) | compartment specification | ||
uniform | none | cmt ~ dunif(a, b) | compartment specification | ||
weibull | none | cmt ~ dweibull(a, b) | compartment specification | ||
gamma | none | cmt ~ dgamma(a, b) | compartment specification | ||
geometric | none | cmt ~ dgeom(a) | compartment specification | ||
negative binomial form #1 | none | cmt ~ dnbinom(n, p) | compartment specification | ||
negative binomial form #2 | none | cmt ~ dnbinomMu(size, mu) | compartment specification | ||
ordinal probability | none | cmt ~ c(p0=0, p1=1, p2=2, 3) | compartment specification | ||
log-likelihood | none | ll(cmt) ~ log likelihood expression | likelihood + compartment expression | ||
An object (environment) of class rxode2
(see Chambers and Temple Lang (2001))
consisting of the following list of strings and functions:
* `model` a character string holding the source model specification. * `get.modelVars`a function that returns a list with 3 character vectors, `params`, `state`, and `lhs` of variable names used in the model specification. These will be output when the model is computed (i.e., the ODE solved by integration). * `solve`{this function solves (integrates) the ODE. This is done by passing the code to [rxSolve()]. This is as if you called `rxSolve(rxode2object, ...)`, but returns a matrix instead of a rxSolve object. `params`: a numeric named vector with values for every parameter in the ODE system; the names must correspond to the parameter identifiers used in the ODE specification; `events`: an `eventTable` object describing the input (e.g., doses) to the dynamic system and observation sampling time points (see [eventTable()]); `inits`: a vector of initial values of the state variables (e.g., amounts in each compartment), and the order in this vector must be the same as the state variables (e.g., PK/PD compartments); `stiff`: a logical (`TRUE` by default) indicating whether the ODE system is stiff or not. For stiff ODE systems (`stiff = TRUE`), `rxode2` uses the LSODA (Livermore Solver for Ordinary Differential Equations) Fortran package, which implements an automatic method switching for stiff and non-stiff problems along the integration interval, authored by Hindmarsh and Petzold (2003). For non-stiff systems (`stiff = FALSE`), `rxode2` uses `DOP853`, an explicit Runge-Kutta method of order 8(5, 3) of Dormand and Prince as implemented in C by Hairer and Wanner (1993). `trans_abs`: a logical (`FALSE` by default) indicating whether to fit a transit absorption term (TODO: need further documentation and example); `atol`: a numeric absolute tolerance (1e-08 by default); `rtol`: a numeric relative tolerance (1e-06 by default). The output of \dQuote{solve} is a matrix with as many rows as there are sampled time points and as many columns as system variables (as defined by the ODEs and additional assignments in the rxode2 model code).} * `isValid` a function that (naively) checks for model validity, namely that the C object code reflects the latest model specification. * `version` a string with the version of the `rxode2` object (not the package). * `dynLoad` a function with one `force = FALSE` argument that dynamically loads the object code if needed. * `dynUnload` a function with no argument that unloads the model object code. * `delete` removes all created model files, including C and DLL files. The model object is no longer valid and should be removed, e.g., `rm(m1)`. * `run` deprecated, use `solve`. * `get.index` deprecated. * `getObj` internal (not user callable) function.
NA
Strings are converted to double values inside of rxode2
, hence you can
refer to them as an integer corresponding to the string value or the
string value itself. For covariates these are calculated on the fly
based on your data and you should likely not try this, though you should
be aware. For strings defined in the model, this is fixed and both could
be used.
For example:
if (APGAR == 10 || APGAR == 8 || APGAR == 9) { tAPGAR <- "High" } else if (APGAR == 1 || APGAR == 2 || APGAR == 3) { tAPGAR <- "Low" } else if (APGAR == 4 || APGAR == 5 || APGAR == 6 || APGAR == 7) { tAPGAR <- "Med" } else { tAPGAR<- "Med" }
Could also be replaced by:
if (APGAR == 10 || APGAR == 8 || APGAR == 9) { tAPGAR <- "High" } else if (APGAR == 1 || APGAR == 2 || APGAR == 3) { tAPGAR <- "Low" } else if (APGAR == 4 || APGAR == 5 || APGAR == 6 || APGAR == 7) { tAPGAR <- "Med" } else { tAPGAR<- 3 }
Since "Med"
is already defined
If you wanted you can pre-declare what levels it has (and the order) to give you better control of this:
levels(tAPGAR) <- c("Med", "Low", "High") if (APGAR == 10 || APGAR == 8 || APGAR == 9) { tAPGAR <- 3 } else if (APGAR == 1 || APGAR == 2 || APGAR == 3) { tAPGAR <- 2 } else if (APGAR == 4 || APGAR == 5 || APGAR == 6 || APGAR == 7) { tAPGAR <- 1 } else { tAPGAR<- 1 }
You can see that the number changed since the declaration change the
numbers in each variable for tAPGAR
. These levels()
statements need
to be declared before the variable occurs to ensure the numbering is
consistent with what is declared.
Melissa Hallow, Wenping Wang and Matthew Fidler
Chamber, J. M. and Temple Lang, D. (2001) Object Oriented Programming in R. R News, Vol. 1, No. 3, September 2001. https://cran.r-project.org/doc/Rnews/Rnews_2001-3.pdf.
Hindmarsh, A. C. ODEPACK, A Systematized Collection of ODE Solvers. Scientific Computing, R. S. Stepleman et al. (Eds.), North-Holland, Amsterdam, 1983, pp. 55-64.
Petzold, L. R. Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of Ordinary Differential Equations. Siam J. Sci. Stat. Comput. 4 (1983), pp. 136-148.
Hairer, E., Norsett, S. P., and Wanner, G. Solving ordinary differential equations I, nonstiff problems. 2nd edition, Springer Series in Computational Mathematics, Springer-Verlag (1993).
Plevyak, J.
dparser
, https://dparser.sourceforge.net/. Web. 12 Oct. 2015.
eventTable()
, et()
, add.sampling()
, add.dosing()
mod <- function() {
ini({
KA <- .291
CL <- 18.6
V2 <- 40.2
Q <- 10.5
V3 <- 297.0
Kin <- 1.0
Kout <- 1.0
EC50 <- 200.0
})
model({
# A 4-compartment model, 3 PK and a PD (effect) compartment
# (notice state variable names 'depot', 'centr', 'peri', 'eff')
C2 <- centr/V2
C3 <- peri/V3
d/dt(depot) <- -KA*depot;
d/dt(centr) <- KA*depot - CL*C2 - Q*C2 + Q*C3;
d/dt(peri) <- Q*C2 - Q*C3;
d/dt(eff) <- Kin - Kout*(1-C2/(EC50+C2))*eff;
eff(0) <- 1
})
}
m1 <- rxode2(mod)
print(m1)
# Step 2 - Create the model input as an EventTable,
# including dosing and observation (sampling) events
# QD (once daily) dosing for 5 days.
qd <- et(amountUnits = "ug", timeUnits = "hours") %>%
et(amt = 10000, addl = 4, ii = 24)
# Sample the system hourly during the first day, every 8 hours
# then after
qd <- qd %>% et(0:24) %>%
et(from = 24 + 8, to = 5 * 24, by = 8)
# Step 3 - solve the system
qd.cp <- rxSolve(m1, qd)
head(qd.cp)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.