#' Log likelihood for normal distribution
#'
#' @param x Observation
#' @param mean Mean for the likelihood
#' @param sd Standard deviation for the likelihood
#' @param full Add the data frame showing x, mean, sd as well as the
#' fx and derivatives
#'
#' @details
#'
#' In an `rxode2()` model, you can use `llikNorm()` but you have to
#' use all arguments. You can also get the derivatives with
#' `llikNormDmean()` and `llikNormDsd()`
#'
#' @return data frame with `fx` for the pdf value of with `dMean` and
#' `dSd` that has the derivatives with respect to the parameters at
#' the observation time-point
#' @author Matthew L. Fidler
#' @export
#' @importFrom Rcpp sourceCpp
#' @examples
#'
#' \donttest{
#'
#' llikNorm(0)
#'
#' llikNorm(seq(-2,2,length.out=10), full=TRUE)
#'
#' # With rxode2 you can use:
#'
#' et <- et(-3, 3, length.out=10)
#' et$mu <- 0
#' et$sigma <- 1
#'
#' model <- function(){
#' model({
#' fx <- llikNorm(time, mu, sigma)
#' dMean <- llikNormDmean(time, mu, sigma)
#' dSd <- llikNormDsd(time, mu, sigma)
#' })
#' }
#'
#' ret <- rxSolve(model, et)
#' ret
#' }
llikNorm <- function(x, mean = 0, sd = 1, full=FALSE) {
rxode2ll::llikNorm(x, mean, sd, full)
}
#' log-likelihood for the Poisson distribution
#'
#' @param x non negative integers
#' @param lambda non-negative means
#' @inheritParams llikNorm
#' @details
#'
#' In an `rxode2()` model, you can use `llikPois()` but you have to
#' use all arguments. You can also get the derivatives with
#' `llikPoisDlambda()`
#'
#' @return data frame with `fx` for the pdf value of with
#' `dLambda` that has the derivatives with respect to the parameters at
#' the observation time-point
#' @author Matthew L. Fidler
#' @export
#' @examples
#' \donttest{
#' llikPois(0:7, lambda = 1)
#'
#' llikPois(0:7, lambda = 4, full=TRUE)
#'
#' # In rxode2 you can use:
#'
#' et <- et(0:10)
#' et$lambda <- 0.5
#'
#' model <- function() {
#' model({
#' fx <- llikPois(time, lambda)
#' dLambda <- llikPoisDlambda(time, lambda)
#' })
#' }
#'
#' rxSolve(model, et)
#' }
llikPois <- function(x, lambda, full=FALSE) {
rxode2ll::llikPois(x, lambda, full)
}
#' Calculate the log likelihood of the binomial function (and its derivatives)
#'
#' @param x Number of successes
#' @param size Size of trial
#' @param prob probability of success
#'
#' @inheritParams llikNorm
#'
#' @details
#'
#' In an `rxode2()` model, you can use `llikBinom()` but you have to
#' use all arguments. You can also get the derivative of `prob` with
#' `llikBinomDprob()`
#'
#' @return data frame with `fx` for the pdf value of with
#' `dProb` that has the derivatives with respect to the parameters at
#' the observation time-point
#' @author Matthew L. Fidler
#' @export
#' @examples
#' \donttest{
#' llikBinom(46:54, 100, 0.5)
#'
#' llikBinom(46:54, 100, 0.5, TRUE)
#'
#' # In rxode2 you can use:
#'
#' et <- et(46:54)
#' et$size <- 100
#' et$prob <-0.5
#'
#' model <- function() {
#' model({
#' fx <- llikBinom(time, size, prob)
#' dProb <- llikBinomDprob(time, size, prob)
#' })
#' }
#'
#' rxSolve(model, et)
#' }
llikBinom <- function(x, size, prob, full=FALSE) {
rxode2ll::llikBinom(x, size, prob, full)
}
#' Calculate the log likelihood of the negative binomial function (and its derivatives)
#'
#' @param x Number of successes
#' @param size Size of trial
#' @param prob probability of success
#'
#' @inheritParams llikNorm
#'
#' @details
#' In an `rxode2()` model, you can use `llikNbinom()` but you have to
#' use all arguments. You can also get the derivative of `prob` with
#' `llikNbinomDprob()`
#' @return data frame with `fx` for the pdf value of with
#' `dProb` that has the derivatives with respect to the parameters at
#' the observation time-point
#' @author Matthew L. Fidler
#' @export
#' @examples
#' \donttest{
#' llikNbinom(46:54, 100, 0.5)
#'
#' llikNbinom(46:54, 100, 0.5, TRUE)
#'
#' # In rxode2 you can use:
#'
#' et <- et(46:54)
#' et$size <- 100
#' et$prob <-0.5
#'
#' model <- function() {
#' model({
#' fx <- llikNbinom(time, size, prob)
#' dProb <- llikNbinomDprob(time, size, prob)
#' })
#' }
#'
#' rxSolve(model, et)
#' }
llikNbinom <- function(x, size, prob, full=FALSE) {
rxode2ll::llikNbinom(x, size, prob, full)
}
#' Calculate the log likelihood of the negative binomial function (and its derivatives)
#'
#' @param x Number of successes
#'
#' @param size Size of trial
#'
#' @param mu mu parameter for negative binomial
#'
#' @inheritParams llikNorm
#'
#' @details
#'
#' In an `rxode2()` model, you can use `llikNbinomMu()` but you have to
#' use all arguments. You can also get the derivative of `mu` with
#' `llikNbinomMuDmu()`
#'
#' @return data frame with `fx` for the pdf value of with
#' `dProb` that has the derivatives with respect to the parameters at
#' the observation time-point
#'
#' @author Matthew L. Fidler
#'
#' @export
#' @examples
#' \donttest{
#' llikNbinomMu(46:54, 100, 40)
#'
#' llikNbinomMu(46:54, 100, 40, TRUE)
#'
#' et <- et(46:54)
#' et$size <- 100
#' et$mu <- 40
#'
#' model <- function() {
#' model({
#' fx <- llikNbinomMu(time, size, mu)
#' dProb <- llikNbinomMuDmu(time, size, mu)
#' })
#' }
#'
#' rxSolve(model, et)
#' }
llikNbinomMu <- function(x, size, mu, full=FALSE) {
rxode2ll::llikNbinomMu(x, size, mu, full)
}
#' Calculate the log likelihood of the binomial function (and its derivatives)
#'
#' @inheritParams stats::dbeta
#'
#' @inheritParams llikNorm
#'
#' @details
#'
#' In an `rxode2()` model, you can use `llikBeta()` but you have to
#' use all arguments. You can also get the derivative of `shape1` and `shape2` with
#' `llikBetaDshape1()` and `llikBetaDshape2()`.
#'
#' @return data frame with `fx` for the log pdf value of with
#' `dShape1` and `dShape2` that has the derivatives with respect to the parameters at
#' the observation time-point
#'
#' @author Matthew L. Fidler
#'
#' @export
#'
#' @examples
#'
#' \donttest{
#'
#' x <- seq(1e-4, 1 - 1e-4, length.out = 21)
#'
#' llikBeta(x, 0.5, 0.5)
#'
#' llikBeta(x, 1, 3, TRUE)
#'
#' et <- et(seq(1e-4, 1-1e-4, length.out=21))
#' et$shape1 <- 0.5
#' et$shape2 <- 1.5
#'
#' model <- function() {
#' model({
#' fx <- llikBeta(time, shape1, shape2)
#' dShape1 <- llikBetaDshape1(time, shape1, shape2)
#' dShape2 <- llikBetaDshape2(time, shape1, shape2)
#' })
#' }
#'
#' rxSolve(model, et)
#' }
llikBeta <- function(x, shape1, shape2, full=FALSE) {
rxode2ll::llikBeta(x, shape1, shape2, full)
}
#' Log likelihood of T and it's derivatives (from stan)
#'
#' @param x Observation
#' @inheritParams llikNorm
#' @inheritParams stats::dnorm
#' @inheritParams stats::dt
#' @return data frame with `fx` for the log pdf value of with `dDf`
#' `dMean` and `dSd` that has the derivatives with respect to the parameters at
#' the observation time-point
#' @author Matthew L. Fidler
#' @details
#' In an `rxode2()` model, you can use `llikT()` but you have to
#' use all arguments. You can also get the derivative of `df`, `mean` and `sd` with
#' `llikTDdf()`, `llikTDmean()` and `llikTDsd()`.
#' @export
#' @examples
#'
#' \donttest{
#' x <- seq(-3, 3, length.out = 21)
#'
#' llikT(x, 7, 0, 1)
#'
#' llikT(x, 15, 0, 1, full=TRUE)
#'
#' et <- et(-3, 3, length.out=10)
#' et$nu <- 7
#' et$mean <- 0
#' et$sd <- 1
#'
#' model <- function() {
#' model({
#' fx <- llikT(time, nu, mean, sd)
#' dDf <- llikTDdf(time, nu, mean, sd)
#' dMean <- llikTDmean(time, nu, mean, sd)
#' dSd <- llikTDsd(time, nu, mean, sd)
#' })
#' }
#'
#' rxSolve(model, et)
#' }
#'
llikT <- function(x, df, mean=0, sd=1, full=FALSE) {
rxode2ll::llikT(x, df, mean, sd)
}
#' log likelihood and derivatives for chi-squared distribution
#'
#' @param x variable that is distributed by chi-squared distribution
#' @inheritParams llikNorm
#' @inheritParams stats::dchisq
#' @return data frame with `fx` for the log pdf value of with `dDf`
#' that has the derivatives with respect to the `df` parameter
#' the observation time-point
#' @author Matthew L. Fidler
#' @export
#' @details
#' In an `rxode2()` model, you can use `llikChisq()` but you have to
#' use the x and df arguments. You can also get the derivative of `df` with
#' `llikChisqDdf()`.
#' @examples
#'
#' \donttest{
#' llikChisq(1, df = 1:3, full=TRUE)
#'
#' llikChisq(1, df = 6:9)
#'
#' et <- et(1:3)
#' et$x <- 1
#'
#' model <- function() {
#' model({
#' fx <- llikChisq(x, time)
#' dDf <- llikChisqDdf(x, time)
#' })
#' }
#'
#' rxSolve(model, et)
#' }
llikChisq <- function(x, df, full=FALSE) {
rxode2ll::llikChisq(x, df, full)
}
#' log likelihood and derivatives for exponential distribution
#'
#' @param x variable that is distributed by exponential distribution
#' @inheritParams llikNorm
#' @inheritParams stats::dexp
#' @return data frame with `fx` for the log pdf value of with `dRate`
#' that has the derivatives with respect to the `rate` parameter
#' the observation time-point
#'
#' @author Matthew L. Fidler
#'
#' @export
#'
#' @details
#' In an `rxode2()` model, you can use `llikExp()` but you have to
#' use the x and rate arguments. You can also get the derivative of `rate` with
#' `llikExpDrate()`.
#'
#' @examples
#' \donttest{
#' llikExp(1, 1:3)
#'
#' llikExp(1, 1:3, full=TRUE)
#'
#' # You can use rxode2 for these too:
#'
#' et <- et(1:3)
#' et$x <- 1
#'
#' model <- function() {
#' model({
#' fx <- llikExp(x, time)
#' dRate <- llikExpDrate(x, time)
#' })
#' }
#'
#' rxSolve(model, et)
#' }
llikExp <- function(x, rate, full=FALSE) {
rxode2ll::llikExp(x, rate, full)
}
#' log likelihood and derivatives for F distribution
#'
#' @param x variable that is distributed by f distribution
#' @inheritParams llikNorm
#' @inheritParams stats::df
#' @return data frame with `fx` for the log pdf value of with `dDf1` and `dDf2`
#' that has the derivatives with respect to the `df1`/`df2` parameters at
#' the observation time-point
#'
#' @author Matthew L. Fidler
#'
#' @export
#'
#' @details
#' In an `rxode2()` model, you can use `llikF()` but you have to
#' use the x and rate arguments. You can also get the derivative of `df1` and `df2` with
#' `llikFDdf1()` and `llikFDdf2()`.
#'
#' @examples
#'
#' \donttest{
#' x <- seq(0.001, 5, length.out = 100)
#'
#' llikF(x^2, 1, 5)
#'
#' model <- function(){
#' model({
#' fx <- llikF(time, df1, df2)
#' dMean <- llikFDdf1(time, df1, df2)
#' dSd <- llikFDdf2(time, df1, df2)
#' })
#' }
#'
#' et <- et(x)
#' et$df1 <- 1
#' et$df2 <- 5
#'
#' rxSolve(model, et)
#' }
llikF <- function(x, df1, df2, full=FALSE) {
rxode2ll::llikF(x, df1, df2, full)
}
#' log likelihood and derivatives for Geom distribution
#'
#' @param x variable distributed by a geom distribution
#'
#' @inheritParams llikNorm
#' @inheritParams stats::dgeom
#' @return data frame with `fx` for the log pdf value of with `dProb`
#' that has the derivatives with respect to the `prob` parameters at
#' the observation time-point
#'
#' @author Matthew L. Fidler
#'
#' @export
#'
#' @details
#' In an `rxode2()` model, you can use `llikGeom()` but you have to
#' use the x and rate arguments. You can also get the derivative of `prob` with
#' `llikGeomDprob()`.
#'
#' @examples
#'
#' \donttest{
#'
#' llikGeom(1:10, 0.2)
#'
#' et <- et(1:10)
#' et$prob <- 0.2
#'
#' model <- function() {
#' model({
#' fx <- llikGeom(time, prob)
#' dProb <- llikGeomDprob(time, prob)
#' })
#' }
#'
#' rxSolve(model, et)
#' }
llikGeom <- function(x, prob, full=FALSE) {
rxode2ll::llikGeom(x, prob, full)
}
#' log likelihood and derivatives for Unif distribution
#'
#' @param x variable distributed by a uniform distribution
#' @param alpha is the lower limit of the uniform distribution
#' @param beta is the upper limit of the distribution
#' @inheritParams llikNorm
#' @inheritParams stats::dunif
#' @return data frame with `fx` for the log pdf value of with `dProb`
#' that has the derivatives with respect to the `prob` parameters at
#' the observation time-point
#'
#' @author Matthew L. Fidler
#'
#' @export
#'
#' @details
#'
#' In an `rxode2()` model, you can use `llikUnif()` but you have to
#' use the x and rate arguments. You can also get the derivative of `alpha` or `beta` with
#' `llikUnifDalpha()` and `llikUnifDbeta()`.
#'
#' @examples
#'
#' \donttest{
#'
#' llikUnif(1, -2, 2)
#'
#' et <- et(seq(1,1, length.out=4))
#' et$alpha <- -2
#' et$beta <- 2
#'
#' model <- function() {
#' model({
#' fx <- llikUnif(time, alpha, beta)
#' dAlpha<- llikUnifDalpha(time, alpha, beta)
#' dBeta <- llikUnifDbeta(time, alpha, beta)
#' })
#' }
#'
#' rxSolve(model, et)
#' }
llikUnif <- function(x, alpha, beta, full=FALSE) {
rxode2ll::llikUnif(x, alpha, beta, full)
}
#' log likelihood and derivatives for Weibull distribution
#'
#' @param x variable distributed by a Weibull distribution
#'
#' @inheritParams llikNorm
#' @inheritParams stats::dweibull
#' @return data frame with `fx` for the log pdf value of with `dProb`
#' that has the derivatives with respect to the `prob` parameters at
#' the observation time-point
#'
#' @author Matthew L. Fidler
#'
#' @export
#'
#' @details
#'
#' In an `rxode2()` model, you can use `llikWeibull()` but you have to
#' use the x and rate arguments. You can also get the derivative of `shape` or `scale` with
#' `llikWeibullDshape()` and `llikWeibullDscale()`.
#'
#' @examples
#' \donttest{
#' llikWeibull(1, 1, 10)
#'
#' # rxode2 can use this too:
#'
#' et <- et(seq(0.001, 1, length.out=10))
#' et$shape <- 1
#' et$scale <- 10
#'
#' model <- function() {
#' model({
#' fx <- llikWeibull(time, shape, scale)
#' dShape<- llikWeibullDshape(time, shape, scale)
#' dScale <- llikWeibullDscale(time, shape, scale)
#' })
#' }
#'
#' rxSolve(model, et)
#' }
llikWeibull <- function(x, shape, scale, full=FALSE) {
rxode2ll::llikWeibull(x, shape, scale, full)
}
#' log likelihood and derivatives for Gamma distribution
#'
#' @param x variable that is distributed by gamma distribution
#' @param shape this is the distribution's shape parameter. Must be positive.
#' @param rate this is the distribution's rate parameters. Must be positive.
#'
#' @inheritParams llikNorm
#'
#' @inheritParams stats::dgamma
#'
#' @return data frame with `fx` for the log pdf value of with `dProb`
#' that has the derivatives with respect to the `prob` parameters at
#' the observation time-point
#'
#' @author Matthew L. Fidler
#'
#' @export
#'
#' @details
#'
#' In an `rxode2()` model, you can use `llikGamma()` but you have to
#' use the x and rate arguments. You can also get the derivative of `shape` or `rate` with
#' `llikGammaDshape()` and `llikGammaDrate()`.
#'
#' @examples
#' \donttest{
#'
#' llikGamma(1, 1, 10)
#'
#' # You can use this in `rxode2` too:
#'
#' et <- et(seq(0.001, 1, length.out=10))
#' et$shape <- 1
#' et$rate <- 10
#'
#' model <- function() {
#' model({
#' fx <- llikGamma(time, shape, rate)
#' dShape<- llikGammaDshape(time, shape, rate)
#' dRate <- llikGammaDrate(time, shape, rate)
#' })
#' }
#'
#' rxSolve(model, et)
#' }
llikGamma <- function(x, shape, rate, full=FALSE) {
rxode2ll::llikGamma(x, shape, rate, full)
}
#' log likelihood of Cauchy distribution and it's derivatives (from stan)
#'
#' @param x Observation
#' @inheritParams llikNorm
#' @inheritParams stats::dnorm
#' @inheritParams stats::dcauchy
#' @return data frame with `fx` for the log pdf value of with
#' `dLocation` and `dScale` that has the derivatives with respect to the parameters at
#' the observation time-point
#' @author Matthew L. Fidler
#' @details
#' In an `rxode2()` model, you can use `llikCauchy()` but you have to
#' use all arguments. You can also get the derivative of `location` and `scale` with
#' `llikCauchyDlocation()` and `llikCauchyDscale()`.
#' @export
#' @examples
#' \donttest{
#' x <- seq(-3, 3, length.out = 21)
#'
#' llikCauchy(x, 0, 1)
#'
#' llikCauchy(x, 3, 1, full=TRUE)
#'
#' et <- et(-3, 3, length.out=10)
#' et$location <- 0
#' et$scale <- 1
#'
#' model <- function() {
#' model({
#' fx <- llikCauchy(time, location, scale)
#' dLocation <- llikCauchyDlocation(time, location, scale)
#' dScale <- llikCauchyDscale(time, location, scale)
#' })
#' }
#'
#' rxSolve(model, et)
#' }
llikCauchy <- function(x, location=0, scale=1, full=FALSE) {
rxode2ll::llikCauchy(x, location, scale, full)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.