knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(nlmixr2targets)
nlmixr2targets
The nlmixr2targets
improves reproducibility by ensuring that your model is
up-to-date with your data, and it speeds your workflow using the targets
package to only run models when the model or data have changed.
There are two main functions that are used within the package:
tar_nlmixr()
which runs a single model, andtar_nlmixr_multimodel()
which runs multiple models for a single dataset.Using nlmixr2targets
requires the use of the targets
package. To learn
about the targets
package, see
(https://docs.ropensci.org/targets/)[the targets website].
tar_nlmixr()
)The tar_nlmixr()
function allows you to estimate one model with one dataset.
It will generate three targets: a simplified version of the model, a minimal
version of the dataset, and the estimation step.
The simplified version of the model removes parts that are less reproducible but changes none of the model intent. (Advanced information: The parts that are removed are that the source references and the model name. Also, the model is modified at this step for setting initial values as described in the previous section of this vignette.)
library(targets) library(tarchetypes) library(nlmixr2targets) pheno <- function() { ini({ lcl <- log(0.008); label("Typical value of clearance") lvc <- log(0.6); label("Typical value of volume of distribution") etalcl + etalvc ~ c(1, 0.01, 1) cpaddSd <- 0.1; label("residual variability") }) model({ cl <- exp(lcl + etalcl) vc <- exp(lvc + etalvc) kel <- cl/vc d/dt(central) <- -kel*central cp <- central/vc cp ~ add(cpaddSd) }) } plan_model <- tar_plan( myData = nlmixr2data::pheno_sd, tar_nlmixr( model_pheno, object = pheno, data = myData, est = "saem" ) ) list( plan_model )
tar_nlmixr_multimodel()
)A common use case is to generate multiple models using a single dataset and
estimation method. tar_nlmixr_multimodel()
allows the generation of a named
list of models to allow subsequent analysis of all models.
Internally, tar_nlmixr_multimodel()
passes all the models to tar_nlmixr()
so
that the data set simplification and equivalent steps run once per model, and
not model is run more often than required for dataset or model changes.
library(targets) library(tarchetypes) library(nlmixr2targets) pheno <- function() { ini({ lcl <- log(0.008); label("Typical value of clearance") lvc <- log(0.6); label("Typical value of volume of distribution") etalcl + etalvc ~ c(1, 0.01, 1) cpaddSd <- 0.1; label("residual variability") }) model({ cl <- exp(lcl + etalcl) vc <- exp(lvc + etalvc) kel <- cl/vc d/dt(central) <- -kel*central cp <- central/vc cp ~ add(cpaddSd) }) } pheno2 <- function() { ini({ lcl <- log(0.008); label("Typical value of clearance") lvc <- log(0.6); label("Typical value of volume of distribution") etalcl + etalvc ~ c(2, 0.01, 2) cpaddSd <- 3.0; label("residual variability") }) model({ cl <- exp(lcl + etalcl) vc <- exp(lvc + etalvc) kel <- cl/vc d/dt(central) <- -kel*central cp <- central/vc cp ~ add(cpaddSd) }) } plan_model <- tar_nlmixr_multimodel( all_models, data = nlmixr2data::pheno_sd, est = "saem", "Base model; additive residual error = 1" = pheno, "Base model; additive residual error = 3" = pheno2 ) plan_report <- tar_plan( # Determine the AIC for all tested models aic_list = sapply(X = all_models, FUN = AIC) ) list( plan_model, plan_report )
Model piping for nlmixr2
models (see
vignette("modelPiping", package = "nlmixr2")
) is possible within the multiple
models being estimated with tar_nlmixr_multimodel()
. It simplifies examples
like the one above so that you can focus on the model content and avoid
rewriting models, as with all nlmixr2
model piping.
To use model piping, simply refer to the model by its name like a named list.
Behind the scenes, nlmixr2targets
will work out the dependencies between the
models and only rerun the dependent model if it or the dependent model changes.
library(targets) library(tarchetypes) library(nlmixr2targets) library(nlmixr2) pheno <- function() { ini({ lcl <- log(0.008); label("Typical value of clearance") lvc <- log(0.6); label("Typical value of volume of distribution") etalcl + etalvc ~ c(1, 0.01, 1) cpaddSd <- 0.1; label("residual variability") }) model({ cl <- exp(lcl + etalcl) vc <- exp(lvc + etalvc) kel <- cl/vc d/dt(central) <- -kel*central cp <- central/vc cp ~ add(cpaddSd) }) } plan_model <- tar_nlmixr_multimodel( all_models, data = nlmixr2data::pheno_sd, est = "saem", "Base model; additive residual error = 1" = pheno, "Base model; additive residual error = 3" = all_models[["Base model; additive residual error = 1"]] |> ini(cpaddSd = 3) ) list( plan_model )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.