Description Usage Format References See Also Examples
A tumor growth inhibition model for low-grade glioma treated with chemotherapy or radiotherapy
1 |
An RxODE model with 9 parameters, 4 ODE states, and 1 calc vars.
Parameters (Ribba2012$params)
Typical parameters:
Maximum tumor size (default=100) mm
Decay rate of PCV concentration in plasma (default=0.3)
Transition rate of proliferative tissue to quiescence tissue (default=0.025)
Rate constant for damaged quiescent tissue transferring x1to proliferative tissue (default=0.004)
Rate of tissue growth for proliferative tissue (default=0.12)
Damage rate in all tissue (default=1)
Rate constant for elimination of the damaged quiescent tissue (default=0.01)
Initial proliferative tissue amount (default=5)
Initial quiescent tissue level (default=40)
Eta parameters are all zero by default.
State Ribba2012$state
Concentration compartment (=1)
Proliferative Tissue (=2)
Nonproliferative or quiescent tissue (=3)
DNA-Damaged quiescent tissue (=4)
Calculated Variables Ribba2012$lhs
The total tumor tissue ie p + pt + q
A tumor growth inhibition model for low-grade glioma treated with chemotherapy or radiotherapy
Ribba B, Kaloshi G, et al. A. tumor growth inhibition model for low-grade glioma treated with chemotherapy or radiotherapy. Clin Cancer Res. 2012 Sep 15;18(18):5071-80. Epub 2012 Jul 3.
https://www.ncbi.nlm.nih.gov/pubmed/22761472 http://simulx.webpopix.org/videos/simulx-video2/
eventTable
, et
, rxSolve
, RxODE
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | ## Showing the model code
summary(Ribba2012)
## Model without doses
Ribba2012 %>%
et(time.units="months") %>%
et(0, 250, by=0.5) %>%
rxSolve() %>%
plot(pt, q, qp, pstar)
## Add dose of "1" from 50 to 57.5 months by 1.5
Ribba2012 %>%
et(time.units="months") %>%
et(0, 150, by=0.5) %>%
et(amt=1, time=50, until=58, ii=1.5) %>%
rxSolve() %>%
plot(pt, q, qp, pstar)
## Add CVs from paper for individual simulation
## Uses exact formula:
lognCv = function(x){log((x/100)^2+1)}
library(lotri)
## Now create omega matrix
omega <- lotri(eta.pt0 ~ lognCv(94),
eta.q0 ~ lognCv(54),
eta.lambdap ~ lognCv(72),
eta.kqp ~ lognCv(76),
eta.qpp ~ lognCv(97),
eta.deltaqp ~ lognCv(115),
eta.kde ~ lognCv(70))
set.seed(3708)
## simulate 3 subjects
Ribba2012 %>%
et(time.units="months") %>%
et(0, 150, by=0.5) %>%
et(amt=1, time=50, until=58, ii=1.5) %>%
rxParams(omega=omega, nSub=3) %>%
rxSolve() %>%
plot(pt, q, qp, pstar)
## simulate 3 subjects w/ 3 studies
Ribba2012 %>%
et(time.units="months") %>%
et(0, 150, by=0.5) %>%
et(amt=1, time=50, until=58, ii=1.5) %>%
rxParams(omega=omega, nSub=3, nStud=3, dfSub=24) %>%
rxSolve() %>%
plot(pt, q, qp, pstar)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.