knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) library(dists) library(dplyr) library(ggplot2) library(tidyr) data("toy_data1")
Available distance functions:
can
- Canberra distanceche
- Chebyshev distancecos
- Cosine distanceeuc
- Euclidean distancejac
- Jaccard distanceman
- Manhattan distancemat
- Matusita distanceney
- Neyman distancepea
- Pearson distancetrd
- Triangular discrimination distance$$ d_{\text{euc}}({\bf v}, {\bf w}) = \sqrt{\sum_{i=1}^n (v_i-w_i)^2}$$
$$d_{\text{man}}({\bf v}, {\bf w}) = \sum_{i=1}^n |v_i-w_i|$$
$$d_{\text{che}}({\bf v}, {\bf w}) = \max_i\left|v_i-w_i\right|$$
$$ d_{\text{can}}({\bf v}, {\bf w}) = \sum_{i=1}^n \frac{\left|v_i-w_i\right|}{\left|v_i\right|+\left|w_i\right|} $$
$$d_{\text{cos}}({\bf v}, {\bf w}) = 1 - \frac{\sum_{i=1}^{n}{v_i w_i}}{\sqrt{\sum_{i=1}^{n}v_i^2} \sqrt{\sum_{i=1}^{n}w_i^2}}$$
$$d_{\text{jac}}({\bf v}, {\bf w}) = \frac{\sum_{i=1}^{n}{(v_i - w_i)^2}}{\sum_{i=1}^{n}v_i^2 + \sum_{i=1}^{n}w_i^2 - \sum_{i=1}^{n}v_i w_i}$$
$$d_{\text{mat}}({\bf v}, {\bf w}) = \sqrt{\sum_{i=1}^{n}(\sqrt{v_i} - \sqrt{w_i})^2}$$
$$ d_{\text{msc}}({\bf v}, {\bf w}) = \max\left(\sum_{i=1}^{n}\frac{\left(v_i - w_i\right)^2}{v_i},\sum_{i=1}^{n}\frac{\left(v_i - w_i\right)^2}{w_i}\right)$$
$$ d_{\text{ney}}({\bf v}, {\bf w}) = \sum_{i=1}^{n} \frac{(v_i - w_i)^2}{v_i}$$
$$ d_{\text{pea}}({\bf v}, {\bf w}) = \sum_{i=1}^{n}\frac{(v_i - w_i)^2}{w_i}$$
$$d_{tri}({\bf v}, {\bf w}) = \sum_{i=1}^{n} \frac{(v_i - w_i)^2}{v_i + w_i}$$
$$d_{\text{vsd}}({\bf v}, {\bf w}) = \sum_{i=1}^{n}\frac{\left(v_i - w_i\right)^2}{\max\left(v_i,w_i\right)}$$
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.