knitr::opts_chunk$set(echo = TRUE)
1.Use R to conduct a t.test and ANOVA on this data. Then use R to prove that the results of both analyses are the same. For example, prove that the p-values are the same, and prove that the F-value and T-value are related. (3 points)
library(tibble) example_data <- tibble(Group = rep(c("A","B"), each = 5), DV = c(2,4,3,5,4,7,6,5,6,7)) t_test <- t.test(DV~Group, var.equal=TRUE, data = example_data) my_aov <- summary(aov(DV~Group, data = example_data)) t_test$p.value my_aov[[1]]$`Pr(>F)`[1] round(t_test$p.value, digits=5) == round(my_aov[[1]]$`Pr(>F)`[1],digits=5) t_test$statistic my_aov[[1]]$`F value`[1] t_test$statistic^2 == my_aov[[1]]$`F value`[1] t_test$statistic^2 my_aov[[1]]$`F value`[1] round(t_test$statistic^2, digits = 1) == round(my_aov[[1]]$`F value`[1], digits = 1)
library(data.table) library(readr) Jamesetal2015Experiment2 <- read_csv("data/Jamesetal2015Experiment2.csv") View(Jamesetal2015Experiment2) all_data <- fread("data/Jamesetal2015Experiment2.csv") # re-labeling all_data$Condition <- as.factor(all_data$Condition) levels(all_data$Condition) <- c("Control", "Reactivation+Tetris", "Tetris_only", "Reactivation_only") library(ggplot2) ggplot(all_data, aes(x=Condition, y=Days_One_to_Seven_Number_of_Intrusions))+ geom_bar(stat="summary", fun= "mean", position = "dodge")+ geom_point() my_aov <- aov(Days_One_to_Seven_Number_of_Intrusions~Condition, data = all_data) summary(my_aov) library(papaja) apa_print(my_aov)$full_result$Condition
A one-factor between-subjects ANOVA was used to examine the average for intrusive memories for the week from participants in each condition. The independent variables consisted of the intervention type of (no-task control, reactivation plus tetris, reactivation alone, and tetris alone). From the ANOVA performed, we found a main effect of Intervention type, r
apa_print(my_aov)$full_result$Condition
.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.