Description Usage Arguments Value Author(s) References Examples
This method performs linear discriminant analysis on a reference dataset using a pre-defined set of genes related to a pathway of interest.
1 | get_gene_weights(expression_se)
|
expression_se |
This is an SummarizedExperiment object of the reference samples. Rows are
genes and columns are samples. The colData component must contain columns
|
A list containing the gene weights and estimated scores of the reference samples.
proj_vector_df |
A dataframe containing the gene weights and gene ids |
dca_proj |
A dataframe containing the sample scores and sample ids. |
Natalie R. Davidson
Steven C.H. Hoi, W. Liu, M.R. Lyu and W.Y. Ma (2006). Learning Distance Metrics with Contextual Constraints for Image Retrieval. Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR2006).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | data(tcga_expr_df)
# transform from data.frame to SummarizedExperiment
tcga_se <- SummarizedExperiment(t(tcga_expr_df[ , -(1:4)]),
colData=tcga_expr_df[ , 2:4])
colnames(tcga_se) <- tcga_expr_df$tcga_id
colData(tcga_se)$sample_id <- tcga_expr_df$tcga_id
# get related genes, for us hypoxia
hypoxia_gene_ids <- get_hypoxia_genes()
hypoxia_gene_ids <- intersect(hypoxia_gene_ids, rownames(tcga_se))
hypoxia_se <- tcga_se[hypoxia_gene_ids,]
# setup labels for classification
colData(hypoxia_se)$Y <- ifelse(colData(hypoxia_se)$is_normal, 0, 1)
# now we can get the gene weightings
res <- get_gene_weights(hypoxia_se)
gene_weights_test <- res[[1]]
sample_scores <- res[[2]]
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.