View source: R/nonstdMetrics.R
| sera | R Documentation | 
Computes an approximation of the area under the curve described by squared error of predictions for a sequence of subsets with increasing relevance
sera(
  trues,
  preds,
  phi.trues = NULL,
  ph = NULL,
  pl = FALSE,
  m.name = "Model",
  step = 0.001,
  return.err = FALSE,
  norm = FALSE
)
| trues | Target values from a test set of a given data set. Should be a vector and have the same size as the variable preds | 
| preds | Predicted values given a certain test set of a given data set. Should be a vector and have the same size as the variable preds | 
| phi.trues | Relevance of the values in the parameter trues. Use ??phi() for more information. Defaults to NULL | 
| ph | The relevance function providing the data points where the pairs of values-relevance are known. Default is NULL | 
| pl | Boolean to indicate if an illustration of the curve should be provided. Default is FALSE | 
| m.name | Name of the model to be appended in the plot title | 
| step | Relevance intervals between 0 (min) and 1 (max). Default 0.001 | 
| return.err | Boolean to indicate if the errors at each subset of increasing relevance should be returned. Default is FALSE | 
| norm | Normalize the SERA values for internal optimisation only (TRUE/FALSE) | 
Value for the area under the relevance-squared error curve (SERA)
library(IRon)
library(rpart)
if(requireNamespace("rpart")) {
   #' data(accel)
   form <- acceleration ~ .
   ind <- sample(1:nrow(accel),0.75*nrow(accel))
   train <- accel[ind,]
   test <- accel[-ind,]
   ph <- phi.control(accel$acceleration)
   m <- rpart::rpart(form, train)
   preds <- as.vector(predict(m,test))
   trues <- test$acceleration
   phi.trues <- phi(test$acceleration,ph)
   sera(trues,preds,phi.trues)
   sera(trues,preds,phi.trues,pl=TRUE, m.name="Regression Trees")
   sera(trues,preds,phi.trues,pl=TRUE, return.err=TRUE)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.