em.mv.gmm: E-M Algorithm for Multivariate Gaussian Mixture Model // HL

Description Usage Arguments Value

Description

E-M Algorithm for Multivariate Gaussian Mixture Model // HL

Usage

1
em.mv.gmm(x, k, max.iter = 10000, tol = 1e-08)

Arguments

x

A (n x d) matrix of observed data // HL

k

The number of mixing components // HL

max.iter

Maximum number of iterations

tol

Relative tolerance of likelihood at convergence.

Value

A list containing the following values: * llk : log-likelihood value * lambdas : size k vector of estimated mixing proportions * mus : (d x k) of estimated means * covs : (d x d x k) vectors of estimated standard deviations * iter : number of iterations


nwakim/nwREM documentation built on May 22, 2019, 5:34 p.m.