knitr::opts_chunk$set(echo = FALSE) library(dplyr) library(DT)
Available data sources:
Results are now available on legend_t2dm_class_diagnostics
RMarkdown file PsModelAssessment.Rmd
(in LegendT2dm
repo) generates this document using the OHDSI public DB server
Sys.setenv(DATABASECONNECTOR_JAR_FOLDER = keyring::key_get("legendT2dmDriverPath")) legendT2dmConnectionDetails <- DatabaseConnector::createConnectionDetails( dbms = "postgresql", server = paste(keyring::key_get("legendt2dmServer"), keyring::key_get("legendt2dmDatabase"), sep = "/"), user = keyring::key_get("legendt2dmUser"), password = keyring::key_get("legendt2dmPassword")) con <- DatabaseConnector::connect(legendT2dmConnectionDetails) auc <- DatabaseConnector::querySql(con, sql = "SELECT * FROM legendt2dm_class_diagnostics.ps_auc_assessment;", snakeCaseToCamelCase = TRUE) ps <- DatabaseConnector::querySql(con, sql = "SELECT * FROM legendt2dm_class_diagnostics.ps_covariate_assessment;", snakeCaseToCamelCase = TRUE) DatabaseConnector::disconnect(con) auc <- auc %>% mutate(auc = sprintf("%1.4f", auc), equipoise = sprintf("%1.2f", equipoise)) %>% select(auc, equipoise, comparison, databaseId) ps <- ps %>% mutate(sign = ifelse(coefficient >= 0, "+", "-"), absCoef = sprintf("%1.2f", abs(coefficient))) %>% select(absCoef, covariateName, comparison, databaseId)
AUC close to (but not less than) 0.5 is best
Equipoise computed for [0.3 - 0.7] interval
datatable(auc, rownames = FALSE, options = list(order = list(2, 'desc')))
Several highly-separable conceptId
s emerge (vs GLP1RAs):
4203722
- Patient encounter procedure ($\infty$)44924604
- Novofine needles2514610
- Medication therapy management service(s) provided by a pharmacist710054
- Qualified nonphysician health care professional online digital assessment and managementNote: index year: 2013
, BD PEN NEEDLE
and INSULIN AND ANALOGUES
datatable(ps, rownames = FALSE, options = list(order = list(2, 'desc'), pageLength = 5))
LEGEND-HTN list: 76 - Some are questionable for T2DM (eg, wrist joint pain, vaginitis, amputated foot) - Some are gender biased (eg, endometriosis, irregular periods, bbnormal cervical smear)
nc <- read.csv("../inst/settings/NegativeControls.csv") %>% select(name) datatable(nc, rownames = FALSE, options = list(pageLength = 5))
New list from Anna and Patrick:
CEM
(literature, labelingm spontaneous reports)# nc <- read.csv("../inst/settings/NegativeControlsV2.csv") %>% select(name) # # datatable(nc, rownames = FALSE, # options = list(pageLength = 5))
Glycemic control (HbA1c)
Measured renal dysfunction (used in LEGEND-HTN)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.