# package
devtools::load_all()
# read data
df_beta <- read_damodaran("http://www.stern.nyu.edu/~adamodar/pc/datasets/betas.xls", which = 2, skip = 9) %>%
select(industry_name, unlevered_beta, contains("20")) %>%
rename(x2021 = unlevered_beta) %>%
select(-average_2016_21) %>%
tidyr::pivot_longer(-industry_name, names_to = "year", values_to = "unlevered_beta") %>%
mutate(year = stringr::str_remove_all(year, "x") %>% as.numeric)
df_average_beta <- df_beta %>%
group_by(industry_name) %>%
summarise(average_unlevered_beta = mean(unlevered_beta, na.rm = TRUE))
# plot beta over time
industries <- df_average_beta %>%
filter(stringr::str_detect(industry_name, "Retail")) %>%
pull(industry_name) %>%
unique()
p <- df_beta %>%
filter(industry_name %in% industries) %>%
ggplot(aes(x = year, y = unlevered_beta, color = industry_name)) +
geom_line()
plotly::ggplotly(p, dynamicTicks = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.