Description Usage Arguments Details Value Author(s) References See Also
This function provides the maximum likelihood estimation of the parameter given the precomputed correlation matrices for different values of scale parameter, phi. An internal function for SDALGCP
package
1 2 3 4 5 6 7 8 9 |
formula |
an object of class |
data |
data frame containing the variables in the model. |
corr |
the array of the precomputed correlation matrix for each value of the scale parameter. |
par0 |
the initial parameter of the fixed effects beta, the variance sigmasq and the scale parameter phi, specified as c(beta, sigma2, phi) |
control.mcmc |
list from PrevMap package to define the burnin, thining, the number of iteration and the turning parameters see |
plot_profile |
logical; if TRUE the profile-likelihood is plotted. default is FALSE |
messages |
logical; if message=TRUE, it prints the results objective function and the parameters at every phi iteration. Default is FALSE. |
This function performs parameter estimation for a SDALGCP Model
Monte Carlo Maximum likelihood.
The Monte Carlo maximum likelihood method uses conditional simulation from the distribution of the random effect T(x) = d(x)'β+S(x) given the data y
, in order to approximate the high-dimensional intractable integral given by the likelihood function. The resulting approximation of the likelihood is then maximized by a numerical optimization algorithm which uses analytic expression for computation of the gradient vector and Hessian matrix. The functions used for numerical optimization are nlminb
An object of class "SDALGCP".
The function summary.SDALGCP
is used to print a summary of the fitted model.
The object is a list with the following components:
D
: matrix of covariates.
y
: the count, response observations.
m
: offset
beta_opt
: estimates of the fixed effects of the model.
sigma2_opt
: estimates of the variance of the Gaussian process.
phi_opt
: estimates of the scale parameter phi of the Gaussian process.
cov
: covariance matrix of the MCML estimates.
Sigma_mat_opt
: covariance matrix of the Gaussian process that corresponds to the optimal value
llike_val_opt
: maximum value of the log-likelihood.
mu
: mean of the linear predictor
all_para
: the entire estimates for the different values of phi.
all_cov
: the entire covariance matrix of the estimates for the different values of phi.
par0
: the initial parameter of the fixed effects beta and the variance sigmasq used in the estimation
control.mcmc
: the burnin, thining, the number of iteration and the turning parameters used see controlmcmcSDA
.
S
: the linear predictor given the initial parameter
call
: the matched call.
Olatunji O. Johnson o.johnson@lancaster.ac.uk
Emanuele Giorgi e.giorgi@lancaster.ac.uk
Peter J. Diggle p.diggle@lancaster.ac.uk
Giorgi, E., & Diggle, P. J. (2017). PrevMap: an R package for prevalence mapping. Journal of Statistical Software, 78(8), 1-29. doi:10.18637/jss.v078.i08.
Christensen, O. F. (2004). Monte Carlo maximum likelihood in model-based geostatistics. Journal of Computational and Graphical Statistics 13, 702-718.
Aggregated_poisson_log_MCML, Laplace.sampling
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.