#' #'Function to calculate summary statistics for fieldbook data from excel files
#' #'@param data A data frame
#' #'@param idx The name or position of the measured variable that will be summarized.
#' #'@param groupfactors A vector containing names of columns that contain grouping variables
#' #'@param na.rm A boolean that indicates whether to ignore NA's
#' #'@param datadict The data frame of the data dictionary for potato and sweetpotato
#' #'@return A data frame with the count, mean and standard desviation
#' #'@author Omar Benites
#' #'@details This function is capable of divide the information in categorial or quantitative data based on a data dictionary for potato and sweepotato.
#' #'If it is categorical, returns the count #'and mode. And if it is quantitative, returns the count, media and standart desviation.
#' #'@references Progress in developing a potato ontology for breeders. Reinhard Simon, Vilma Hualla, E. Salas, Rene Gomez, Raul Cordova and Stef de Haan.
#' #'Crop Ontology 2014.
#' #'@keywords stats, summary
#' #'@family stats,summary
#' #'@export
#'
#' sb_summary_excel <- function(data=NULL,idx, groupfactors=NULL, na.rm=FALSE, datadict=NULL) {
#' #require(doBy)
#' # New version of length which can handle NA's: if na.rm==T, don't count them
#' if(missing(data)){
#' stop("Please enter your data")
#' }
#' if(missing(idx)){
#' stop("Please enter the name or position of the measured variable")
#' }
#' if(missing(groupfactors)){
#' stop("Please enter the name of columns that contain grouping variables")
#' }
#'
#' length2 <- function (x, na.rm=FALSE) {
#' if (na.rm) sum(!is.na(x))
#' else length(x)
#' }
#'
#' datos <- data
#' vvv <- datos[,idx]
#' lbl <- names(datos[idx]) #extract the trait's label name
#' measurevar <- lbl #the trait's name
#' tp <- as.character(datadict[datadict$ABBR==measurevar,c("TYPE")]) #the type of variable
#'
#' if(tp=="Continuous" || tp=="Discrete"){
#' # filter continuous and discrete data
#' formula <- as.formula(paste(measurevar, paste(groupfactors, collapse=" + "), sep=" ~ "))
#' datac <- doBy::summaryBy(formula, data=data, FUN=c(length2,mean,sd), na.rm=na.rm)
#' # Rename columns
#' names(datac)[ names(datac) == paste(measurevar, ".length2", sep="") ] <- paste(measurevar,"_n",sep="")
#' names(datac)[ names(datac) == paste(measurevar, ".mean", sep="") ] <- paste(measurevar,"_Mean",sep="")
#' names(datac)[ names(datac) == paste(measurevar, ".sd", sep="") ] <- paste(measurevar,"_sd",sep = "")
#' } #Cuantitativa
#'
#' if(tp=="Categorical"){
#' #filter categorical data
#' formula <- as.formula(paste(measurevar, paste(groupfactors, collapse=" + "), sep=" ~ "))
#' datac <- doBy::summaryBy(formula, data=data, FUN=c(length2,themode)) #quit the na.rm
#' names(datac)[ names(datac) == paste(measurevar, ".length2", sep="") ] <- paste(measurevar,"_n",sep="")
#' names(datac)[ names(datac) == paste(measurevar, ".themode", sep="") ] <- paste(measurevar,"_Mode",sep="")
#' } #Cualitativa
#'
#' return(datac)
#' }
#'
#'
#' # fp <- file.choose()
#' # fp1 <- file.choose()
#' # datos <- xlsx::read.xlsx(fp1,sheetName = "Fieldbook")
#' # ddict <- openxlsx::read.xlsx(xlsxFile = fp,startRow = 6,sheet = "Template for submission",detectDates = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.