tests/testthat/_snaps/mmrm-methods.md

h_print_call works as expected

Formula:     FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID)
Data:        fev_data (used 1 observations from 2 subjects with maximum 3 
timepoints)

h_print_call works as expected for weighted fits

Formula:     FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID)
Data:        fev_data (used 1 observations from 2 subjects with maximum 3 
timepoints)
Weights:     .mmrm_weights

h_print_cov works as expected

Covariance:  Toeplitz (3 variance parameters)
Covariance:  Toeplitz (6 variance parameters of 2 groups)

h_print_aic_list works as expected

     AIC      BIC   logLik deviance 
   234.2    234.2   -252.2 345235.2

print.summary.mmrm works as expected

mmrm fit

Formula:     FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID)
Data:        fev_data (used 537 observations from 197 subjects with maximum 4 
timepoints)
Covariance:  unstructured (10 variance parameters)
Method:      Satterthwaite
Vcov Method: Asymptotic
Inference:   REML

Model selection criteria:
     AIC      BIC   logLik deviance 
  3406.4   3439.3  -1693.2   3386.4

Coefficients: 
                              Estimate Std. Error     df t value Pr(>|t|)    
(Intercept)                      30.78       0.89 219.00    34.7   <2e-16 ***
RACEBlack or African American     1.53       0.62 169.00     2.5     0.02 *  
RACEWhite                         5.64       0.67 157.00     8.5    2e-14 ***
SEXFemale                         0.33       0.53 166.00     0.6     0.54    
ARMCDTRT                          3.77       1.07 146.00     3.5    6e-04 ***
AVISITVIS2                        4.84       0.80 144.00     6.0    1e-08 ***
AVISITVIS3                       10.34       0.82 156.00    12.6   <2e-16 ***
AVISITVIS4                       15.05       1.31 138.00    11.5   <2e-16 ***
ARMCDTRT:AVISITVIS2              -0.04       1.13 139.00     0.0     0.97    
ARMCDTRT:AVISITVIS3              -0.69       1.19 158.00    -0.6     0.56    
ARMCDTRT:AVISITVIS4               0.62       1.85 130.00     0.3     0.74    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Covariance estimate:
     VIS1 VIS2 VIS3 VIS4
VIS1 40.6 14.4  5.0 13.4
VIS2 14.4 26.6  2.8  7.5
VIS3  5.0  2.8 14.9  0.9
VIS4 13.4  7.5  0.9 95.6

print.summary.mmrm works as expected for weighted models

mmrm fit

Formula:     FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID)
Data:        fev_data (used 537 observations from 197 subjects with maximum 4 
timepoints)
Weights:     .mmrm_weights
Covariance:  unstructured (10 variance parameters)
Method:      Satterthwaite
Vcov Method: Asymptotic
Inference:   REML

Model selection criteria:
     AIC      BIC   logLik deviance 
  3446.0   3478.8  -1713.0   3426.0

Coefficients: 
                              Estimate Std. Error     df t value Pr(>|t|)    
(Intercept)                      30.34       0.91 222.00    33.5   <2e-16 ***
RACEBlack or African American     1.91       0.61 180.00     3.1    0.002 ** 
RACEWhite                         6.07       0.65 163.00     9.3   <2e-16 ***
SEXFemale                         0.56       0.52 175.00     1.1    0.281    
ARMCDTRT                          3.67       1.09 146.00     3.4    1e-03 ***
AVISITVIS2                        4.86       0.83 144.00     5.8    4e-08 ***
AVISITVIS3                       10.48       0.85 159.00    12.3   <2e-16 ***
AVISITVIS4                       15.58       1.29 128.00    12.1   <2e-16 ***
ARMCDTRT:AVISITVIS2              -0.03       1.15 140.00     0.0    0.977    
ARMCDTRT:AVISITVIS3              -0.65       1.21 163.00    -0.5    0.596    
ARMCDTRT:AVISITVIS4               0.02       1.82 120.00     0.0    0.990    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Covariance estimate:
      VIS1  VIS2 VIS3  VIS4
VIS1 251.6  88.5 27.9  87.7
VIS2  88.5 159.5 13.4  48.7
VIS3  27.9  13.4 90.7   2.3
VIS4  87.7  48.7  2.3 542.6

print.summary.mmrm works as expected for rank deficient fits

mmrm fit

Formula:     FEV1 ~ RACE + SEX + SEX2 + ARMCD * AVISIT + us(AVISIT | USUBJID)
Data:        .mmrm_dat_rank_deficient (used 537 observations from 197 
subjects with maximum 4 timepoints)
Covariance:  unstructured (10 variance parameters)
Method:      Satterthwaite
Vcov Method: Asymptotic
Inference:   REML

Model selection criteria:
     AIC      BIC   logLik deviance 
  3406.4   3439.3  -1693.2   3386.4

Coefficients: (1 not defined because of singularities)
                              Estimate Std. Error     df t value Pr(>|t|)    
(Intercept)                      30.78       0.89 219.00    34.7   <2e-16 ***
RACEBlack or African American     1.53       0.62 169.00     2.5     0.02 *  
RACEWhite                         5.64       0.67 157.00     8.5    2e-14 ***
SEXFemale                         0.33       0.53 166.00     0.6     0.54    
SEX2Female                          NA         NA     NA      NA       NA    
ARMCDTRT                          3.77       1.07 146.00     3.5    6e-04 ***
AVISITVIS2                        4.84       0.80 144.00     6.0    1e-08 ***
AVISITVIS3                       10.34       0.82 156.00    12.6   <2e-16 ***
AVISITVIS4                       15.05       1.31 138.00    11.5   <2e-16 ***
ARMCDTRT:AVISITVIS2              -0.04       1.13 139.00     0.0     0.97    
ARMCDTRT:AVISITVIS3              -0.69       1.19 158.00    -0.6     0.56    
ARMCDTRT:AVISITVIS4               0.62       1.85 130.00     0.3     0.74    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Covariance estimate:
     VIS1 VIS2 VIS3 VIS4
VIS1 40.6 14.4  5.0 13.4
VIS2 14.4 26.6  2.8  7.5
VIS3  5.0  2.8 14.9  0.9
VIS4 13.4  7.5  0.9 95.6

print.summary.mmrm works as expected for grouped fits

mmrm fit

Formula:     FEV1 ~ ARMCD + us(AVISIT | ARMCD/USUBJID)
Data:        fev_data (used 537 observations from 197 subjects with maximum 4 
timepoints)
Covariance:  unstructured (20 variance parameters of 2 groups)
Method:      Satterthwaite
Vcov Method: Asymptotic
Inference:   REML

Model selection criteria:
     AIC      BIC   logLik deviance 
  3702.7   3768.3  -1831.3   3662.7

Coefficients: 
            Estimate Std. Error    df t value Pr(>|t|)    
(Intercept)     41.2        0.4  94.0     101   <2e-16 ***
ARMCDTRT         3.5        0.6 147.0       6    2e-07 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Covariance estimate:
Group: PBO
      VIS1  VIS2 VIS3  VIS4
VIS1 110.7  49.2 -7.0 -47.0
VIS2  49.2  40.1 -2.7 -22.4
VIS3  -7.0  -2.7 23.5  17.7
VIS4 -47.0 -22.4 17.7 132.0
Group: TRT
      VIS1 VIS2 VIS3  VIS4
VIS1 106.8 42.6  2.8 -46.3
VIS2  42.6 40.7  4.6  -4.8
VIS3   2.8  4.6 26.0  20.5
VIS4 -46.3 -4.8 20.5 172.9

print.summary.mmrm works as expected for spatial fits

mmrm fit

Formula:     FEV1 ~ ARMCD + sp_exp(VISITN | USUBJID)
Data:        fev_data (used 537 observations from 197 subjects with maximum 4 
timepoints)
Covariance:  spatial exponential (2 variance parameters)
Method:      Satterthwaite
Vcov Method: Asymptotic
Inference:   REML

Model selection criteria:
     AIC      BIC   logLik deviance 
  3859.1   3865.7  -1927.6   3855.1

Coefficients: 
            Estimate Std. Error    df t value Pr(>|t|)    
(Intercept)     40.3        0.7 194.0      60   <2e-16 ***
ARMCDTRT         4.2        1.0 188.0       4    2e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Covariance estimate:
     0    1
0 84.4 33.0
1 33.0 84.4


openpharma/mmrm documentation built on April 14, 2025, 2:10 a.m.