Description Usage Format Details Methods Active Bindings
This R6 class defines and fits a conditional probability model P(sA[j]|sW,...) for a univariate
categorical summary measure sA[j]. This class inherits from SummariesModel class.
Defines the fitting algorithm for a regression model sA[j] ~ sW + ....
Reconstructs the likelihood P(sA[j]=sa[j]|sW,...) afterwards.
Categorical sA[j] is first redefined into length(levels) bin indicator variables, where
levels is a numeric vector of all unique categories in sA[j].
The fitting algorithm estimates the binary regressions for hazard for each bin indicator, Bin_sA[j][i] ~ sW,
i.e., the probability that categorical sA[j] falls into bin i, Bin_sA[j]_i,
given that sA[j] does not fall in any prior bins Bin_sA[j]_1, ..., Bin_sA[j]_{i-1}.
The dataset of bin indicators (BinsA[j]_1,...,BinsA[j]_M) is created
inside the passed data or newdata object when defining length(levels) bins for sA[j].
1 |
An R6Class generator object
reg - .
outvar - .
levels - .
nbins - .
new(reg, DatNet.sWsA.g0, ...)...
fit(data)...
predict(newdata)...
predictAeqa(newdata)...
cats...
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.