perfRestim: Routine to measure the performance of estimR and estimRmcmc

View source: R/perfRestim.R

perfRestimR Documentation

Routine to measure the performance of estimR and estimRmcmc

Description

This routine can be used to check the 'statistical performance' of the estimR() and estimRmcmc() routines to estimate the reproduction number R_t. It simulates epidemics using the episim() function and computes the Bias, MSE, coverage probability (CP) and width of 90\% and 95\% credible intervals for R_t averaged over days t=8,...,T, where T is the total number of days of the simulated epidemics. As such, it can be used to reproduce part of the results in Gressani et al. (2022) Table 1 and Table 2, respectively. Small differences in results are due to a restructuring of the code since version 1.0.6. If strict reproducible results are required, please refer to version 1.0.6 of the EpiLPS package or visit the GitHub repository https://github.com/oswaldogressani/EpiLPS-ArticleCode.

Usage

perfRestim(nsim = 100, scenario = 1, days = 40, K = 40,
 method = c("LPSMAP", "LPSMALA"), mcmciter = 3000, burnin = 1000,
 si = c("flu", "sars", "mers"), seed = 1325, overdisp = 1000)

Arguments

nsim

Total number of simulated epidemics.

scenario

The scenario to be used in episim().

days

Number of days for the simulated epidemics.

K

Number of B-splines basis function in the P-spline model.

method

The method for LPS, either LPSMAP or LPSMALA.

mcmciter

Number of MCMC samples for method LPSMALA.

burnin

Burn-in for method LPSMALA.

si

The discrete serial interval distribution. Possible specifications are "flu", "sars" or "mers".

seed

A seed for reproducibility.

overdisp

The value of the overdispersion parameter for the negative binomial model in the episim() routine.

Value

A list with the following components:

  • LPS: Results for the LPS approach.

  • EpiEstim: Results for the EpiEstim approach with weekly sliding windows.

  • inciplot: The simulated incidence time series.

  • Rlpsplot: Estimated R_t trajectories with LPS.

  • Repiestimplot: Estimated R_t trajectories with EpiEstim.

Author(s)

Oswaldo Gressani oswaldo_gressani@hotmail.fr

References

Gressani, O., Wallinga, J., Althaus, C. L., Hens, N. and Faes, C. (2022). EpiLPS: A fast and flexible Bayesian tool for estimation of the time-varying reproduction number. Plos Computational Biology, 18(10): e1010618.

Examples

# # FLU serial interval (Scenarios 1-4)
# S1 <- perfRestim(si = "flu", scenario = 1, seed = 1325)
# S1mcmc <- perfRestim(si = "flu", scenario = 1, seed = 1325, method = "LPSMALA")
# suppressWarnings(gridExtra::grid.arrange(S1$inciplot, S1$Rlpsplot, S1$Repiestimplot, nrow = 1))
# S2 <- perfRestim(si = "flu", scenario = 2, seed = 1123)
# S2mcmc <- perfRestim(si = "flu", scenario = 2, seed = 1123, method = "LPSMALA")
# suppressWarnings(gridExtra::grid.arrange(S2$inciplot, S2$Rlpsplot, S2$Repiestimplot, nrow = 1))
# S3 <- perfRestim(si = "flu", scenario = 3, seed = 1314)
# S3mcmc <- perfRestim(si = "flu", scenario = 3, seed = 1314, method = "LPSMALA")
# suppressWarnings(gridExtra::grid.arrange(S3$inciplot, S3$Rlpsplot, S3$Repiestimplot, nrow = 1))
# S4 <- perfRestim(si = "flu", scenario = 4, seed = 1966)
# S4mcmc <- perfRestim(si = "flu", scenario = 4, seed = 1966, method = "LPSMALA")
# suppressWarnings(gridExtra::grid.arrange(S4$inciplot, S4$Rlpsplot, S4$Repiestimplot, nrow = 1))
#
# # SARS serial interval (Scenarios 5-8)
# S5 <- perfRestim(si = "sars", scenario = 1, seed = 1998, overdisp = 5)
# S5mcmc <- perfRestim(si = "sars", scenario = 1, seed = 1998, overdisp = 5, method = "LPSMALA")
# suppressWarnings(gridExtra::grid.arrange(S5$inciplot, S5$Rlpsplot, S5$Repiestimplot, nrow = 1))
# S6 <- perfRestim(si = "sars", scenario = 2, seed = 1870, overdisp = 5)
# S6mcmc <- perfRestim(si = "sars", scenario = 2, seed = 1870, overdisp = 5, method = "LPSMALA")
# suppressWarnings(gridExtra::grid.arrange(S6$inciplot, S6$Rlpsplot, S6$Repiestimplot, nrow = 1))
# S7 <- perfRestim(si = "sars", scenario = 3, seed = 115,  overdisp = 5)
# S7mcmc <- perfRestim(si = "sars", scenario = 3, seed = 115,  overdisp = 5, method = "LPSMALA")
# suppressWarnings(gridExtra::grid.arrange(S7$inciplot, S7$Rlpsplot, S7$Repiestimplot, nrow = 1))
# S8 <- perfRestim(si = "sars", scenario = 4, seed = 1464, overdisp = 5)
# S8mcmc <- perfRestim(si = "sars", scenario = 4, seed = 1464, overdisp = 5, method = "LPSMALA")
# suppressWarnings(gridExtra::grid.arrange(S8$inciplot, S8$Rlpsplot, S8$Repiestimplot, nrow = 1))
#
# # MERS serial interval (Scenario 9)
# S9 <- perfRestim(si = "mers", scenario = 5, days = 60,  seed = 1905, overdisp = 50)
# S9mcmc <- perfRestim(si = "mers", scenario = 5, days = 60,
# seed = 1905, overdisp = 50, method = "LPSMALA")
# suppressWarnings(gridExtra::grid.arrange(S9$inciplot, S9$Rlpsplot,
# S9$Repiestimplot, nrow = 1))
#
# #(Partially recovering Table 2 and Table 3 of Gressani et al. 2022)
# simsummary <- matrix(0, nrow = 36, ncol = 7)
# colnames(simsummary) <- c("Method", "Bias", "MSE", "CP90%", "CP95%",
#                           "CIwidth90%", "CIwidth95%")
# simsummary <- as.data.frame(simsummary)
#
# # Scenario 1
# simsummary[1,] <- c(rownames(S1$LPS),S1$LPS)
# simsummary[2,] <- c(rownames(S1mcmc$LPS),S1mcmc$LPS)
# simsummary[3,] <- c(rownames(S1$EpiEstim),S1$EpiEstim)
# simsummary[4,] <- rep("--",7)
# # Scenario 2
# simsummary[5,] <- c(rownames(S2$LPS),S2$LPS)
# simsummary[6,] <- c(rownames(S2mcmc$LPS),S2mcmc$LPS)
# simsummary[7,] <- c(rownames(S2$EpiEstim),S2$EpiEstim)
# simsummary[8,] <- rep("--",7)
# # Scenario 3
# simsummary[9,] <- c(rownames(S3$LPS),S3$LPS)
# simsummary[10,] <- c(rownames(S3mcmc$LPS),S3mcmc$LPS)
# simsummary[11,] <- c(rownames(S3$EpiEstim),S3$EpiEstim)
# simsummary[12,] <- rep("--",7)
# # Scenario 4
# simsummary[13,] <- c(rownames(S4$LPS),S4$LPS)
# simsummary[14,] <- c(rownames(S4mcmc$LPS),S4mcmc$LPS)
# simsummary[15,] <- c(rownames(S4$EpiEstim),S4$EpiEstim)
# simsummary[16,] <- rep("--",7)
# # Scenario 5
# simsummary[17,] <- c(rownames(S5$LPS),S5$LPS)
# simsummary[18,] <- c(rownames(S5mcmc$LPS),S5mcmc$LPS)
# simsummary[19,] <- c(rownames(S5$EpiEstim),S5$EpiEstim)
# simsummary[20,] <- rep("--",7)
# # Scenario 6
# simsummary[21,] <- c(rownames(S6$LPS),S6$LPS)
# simsummary[22,] <- c(rownames(S6mcmc$LPS),S6mcmc$LPS)
# simsummary[23,] <- c(rownames(S6$EpiEstim),S6$EpiEstim)
# simsummary[24,] <- rep("--",7)
# # Scenario 7
# simsummary[25,] <- c(rownames(S7$LPS),S7$LPS)
# simsummary[26,] <- c(rownames(S7mcmc$LPS),S7mcmc$LPS)
# simsummary[27,] <- c(rownames(S7$EpiEstim),S7$EpiEstim)
# simsummary[28,] <- rep("--",7)
# # Scenario 8
# simsummary[29,] <- c(rownames(S8$LPS),S8$LPS)
# simsummary[30,] <- c(rownames(S8mcmc$LPS),S8mcmc$LPS)
# simsummary[31,] <- c(rownames(S8$EpiEstim),S8$EpiEstim)
# simsummary[32,] <- rep("--",7)
# # Scenario 9
# simsummary[33,] <- c(rownames(S9$LPS),S9$LPS)
# simsummary[34,] <- c(rownames(S9mcmc$LPS),S9mcmc$LPS)
# simsummary[35,] <- c(rownames(S9$EpiEstim),S9$EpiEstim)
# simsummary[36,] <- rep("--",7)
# simsummary


oswaldogressani/EpiLPS documentation built on Oct. 25, 2024, 8:15 p.m.