Outlier Detection Tools for Functional Data Analysis
fdaoutlier
is a collection of outlier detection
tools for functional data analysis. Methods implemented include
directional outlyingness, MS-plot, total variation depth, and sequential
transformations among others.
You can install the current version of fdaoutliers from CRAN with:
install.packages("fdaoutlier")
or the latest the development version from GitHub with:
devtools::install_github("otsegun/fdaoutlier")
Generate some functional data with magnitude outliers:
library(fdaoutlier)
simdata <- simulation_model1(plot = T, seed = 1)
dim(simdata$data)
#> [1] 100 50
Next apply the msplot of Dai & Genton (2018)
ms <- msplot(simdata$data)
ms$outliers
#> [1] 4 7 17 26 29 55 62 66 76
simdata$true_outliers
#> [1] 4 7 17 55 66
Kindly open an issue using Github issues.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.