knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", out.width = "100%" )
Outlier Detection Tools for Functional Data Analysis
fdaoutlier
is a collection of outlier detection tools for functional data analysis. Methods implemented include directional outlyingness, MS-plot, total variation depth, and sequential transformations among others.
You can install the current version of fdaoutliers from CRAN with:
install.packages("fdaoutlier")
or the latest the development version from GitHub with:
devtools::install_github("otsegun/fdaoutlier")
Generate some functional data with magnitude outliers:
library(fdaoutlier) simdata <- simulation_model1(plot = T, seed = 1) dim(simdata$data)
Next apply the msplot of Dai & Genton (2018)
ms <- msplot(simdata$data) ms$outliers simdata$true_outliers
Kindly open an issue using Github issues.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.