knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  fig.path = "man/figures/README-",
  out.width = "100%"
)

fdaoutlier

Outlier Detection Tools for Functional Data Analysis

Codecov test coverage Lifecycle: experimental CRAN status CRAN downloads Licence fdaoutlier is a collection of outlier detection tools for functional data analysis. Methods implemented include directional outlyingness, MS-plot, total variation depth, and sequential transformations among others.

Installation

You can install the current version of fdaoutliers from CRAN with:

install.packages("fdaoutlier")

or the latest the development version from GitHub with:

devtools::install_github("otsegun/fdaoutlier")

Example

Generate some functional data with magnitude outliers:

library(fdaoutlier)
simdata <- simulation_model1(plot = T, seed = 1)
dim(simdata$data)

Next apply the msplot of Dai & Genton (2018)

ms <- msplot(simdata$data)
ms$outliers
simdata$true_outliers

Methods Implemented

  1. MS-Plot (Dai & Genton, 2018)
  2. TVDMSS (Huang & Sun, 2019)
  3. Extremal depth (Narisetty & Nair, 2016)
  4. Extreme rank length depth (Myllymäki et al., 2017; Dai et al., 2020)
  5. Directional quantile (Myllymäki et al., 2017; Dai et al., 2020)
  6. Fast band depth and modified band depth (Sun et al., 2012)
  7. Directional Outlyingness (Dai & Genton, 2019)
  8. Sequential transformation (Dai et al., 2020)

Bugs and Feature Requests

Kindly open an issue using Github issues.



otsegun/fdaoutlier documentation built on Oct. 18, 2023, 12:38 a.m.