View source: R/fts.criterion.R
fts.criterion | R Documentation |
fts.criterion
estimates the optimal number of factors (K) and lags (p) for functional factor models based on information criteria. It applies the methodology proposed by Otto and Salish (2024)
fts.criterion(fdaobj, K.max = NULL, p.max = NULL)
fdaobj |
An object of class 'fdaobj', typically the output from |
K.max |
An optional integer specifying the maximum number of factors to consider. If NULL (default), |
p.max |
An optional integer specifying the maximum number of lags to consider. If NULL (default), |
Estimates the number of factors K and lags p for the approximate functional factor model using the information criteria proposed in Otto and Salish (2024).
Returns a list containing:
IC.min |
A data.frame with the estimated number of factors (K) and lags (p) based on the Bayesian Information Criterion (BIC), Hannan-Quinn Criterion (HQC), and the final prediction error (fFPE) criterion of Aue et al. (2015). |
MSE.matrix |
A matrix of Mean Squared Error (MSE) values for all combinations of considered factors and lags. |
Otto, S., & Salish, N. (2024). Approximate Factor Models For Functional Time Series. arXiv:2201.02532.
Aue, A., Norinho, D. D., & Hörmann, S. (2015). On the prediction of stationary functional time series. Journal of the American Statistical Association, 110(509), 378-392.
fed = load.fed()
fpcaobj = fda.preprocess(data = fed)
criterion_output = fts.criterion(fpcaobj)
print(criterion_output$IC.min)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.