options(scipen = 999) year <- format(Sys.time(), "%Y") assessmentyear <- as.numeric(year) - as.numeric(as.numeric(format(Sys.time(), "%m")) < 5) mydir <- hakedata_wd() mydirfiles <- dir( full.names = TRUE, file.path(mydir, "extractedData"), pattern = "\\.Rdat" ) for (i in mydirfiles) { load(i) }
r format(calc_calendar_date(params$wednesdaynumber), "%b. %d, %Y")
atseacatch <- aggregate( OFFICIAL_TOTAL_CATCH ~ VESSEL_TYPE + format(as.Date(HAUL_DATE),"%Y"), data = ncatch[ncatch$SPECIES == 206 & ncatch$VESSEL_TYPE %in% 1:2, ], sum ) atseacatchMS <- atseacatch[atseacatch$VESSEL_TYPE == 2 & atseacatch[, 2] == year, 3] atseacatchCP <- atseacatch[atseacatch$VESSEL_TYPE == 1 & atseacatch[, 2] == year, 3] tribalcatchinpacfin <- pcatch %>% dplyr::filter(FLEET == "TI", YEAR == year) %>% dplyr::summarize(MT = sum(MT)) %>% dplyr::pull(MT) shorecatch <- pcatch %>% dplyr::filter( YEAR == assessmentyear, FLEET %in% c("LE", "TI", "OA") ) %>% dplyr::group_by(YEAR) %>% dplyr::summarize(MT = sum(MT)) %>% dplyr::pull(MT) researchcatch <- pcatch %>% dplyr::filter( YEAR == assessmentyear, FLEET %in% c("R") ) %>% dplyr::group_by(YEAR) %>% dplyr::summarize(MT=sum(MT)) %>% dplyr::pull(MT) allcatch <- atseacatchMS + atseacatchCP + shorecatch + ifelse(length(researchcatch) == 0, 0, researchcatch) data("quotas") tacs <- c(quotas[, NCOL(quotas)]) names(tacs) <- quotas[, 1]
ntable <- dplyr::group_by( atsea.ages, Year, read = !is.na(AGE) ) %>% dplyr::count() %>% dplyr::filter(read, Year %in% 2008:year) %>% dplyr::pull(n) ptable <- table( page[!is.na(page[, "AGE"]), c("SAMPLE_YEAR")], useNA = "ifany") final <- data.frame( "Year" = names(ptable), "At-Sea" = ntable, "Shoreside" = c(ptable), check.names = FALSE) %>% dplyr::filter(Year %in% (as.numeric(year) - 10:0)) final[, "Total"] <- rowSums(final[, -1])
r year
U.S. catch\centering
Catch = r format_big_number(allcatch)
(mt)
TAC = r format_big_number(sum(tacs))
(mt)
Attainment = r format(allcatch/sum(tacs)*100, nsmall = 1, digits = 1)
(\%)
\centering
Catch = r format_big_number(atseacatchMS)
(mt)
TAC = r format_big_number(tacs["MS"])
(mt)
Attainment = r format(atseacatchMS/tacs["MS"]*100, nsmall = 1, digits = 1)
(\%)
\centering
Catch = r format_big_number(atseacatchCP)
(mt)
TAC = r format_big_number(tacs["CP"])
(mt)
Attainment = r format(atseacatchCP/tacs["CP"]*100, nsmall = 1, digits = 1)
(\%)
\centering
Catch = r format_big_number(shorecatch)
(mt)
TAC = r format_big_number(tacs["Shore"])
(mt)
Attainment = r format(shorecatch/tacs["Shore"]*100, nsmall = 1, digits = 1)
(\%)
{width=100% height=100% alt="U.S. fishery catch: Mothership"}
{width=100% height=100% alt="U.S. fishery catch: Catcher/Processor"}
{width=100% height=100% alt="U.S. fishery catch: Shoreside"}
{width=100% height=100% alt="U.S. at-sea fishery catch depths (fathoms)"}
{width=100% height=100% alt="U.S. at-sea fishery catch-rate"}
{width=100% height=100% alt="U.S. at-sea fishery length distribution"}
{width=100% height=100% alt="U.S. shoreside fishery length distribution"}
{width=100% height=100% alt="U.S. at-sea fishery weight distribution"}
{width=100% height=100% alt="U.S. shoreside fishery weight distribution"}
knitr::kable(final, row.names = FALSE, label = NULL, format = "markdown", caption = "Number of ages for at-sea and shoreside sectors.")
a <- data.frame( table(as.numeric( format( subset( atsea.ages, YEAR == assessmentyear & !is.na(AGE))$HAUL_OFFLOAD_DATE, "%m" ) )) ) b <- data.frame( table(subset( page, SAMPLE_YEAR == assessmentyear & !is.na(AGE))$SAMPLE_MONTH ) ) knitr::kable( merge(a, b, by = "Var1", all = TRUE) %>% dplyr::arrange(as.numeric(as.character(Var1))), format = "markdown", col.names = c("Month", "At-Sea", "Shoreside"), row.names = FALSE, label = NULL, caption = glue::glue('Number of {assessmentyear} ages for at-sea and shoreside sectors by month.') )
A big thanks to all of those who worked to get data debriefed and available by December 01, or shortly thereafter, to the JTC.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.