In this notebook we prepare a data object with the table used in Lavery, T. A., Antonio Páez, and Pavlos S. Kanaroglou. "Driving out of choices: An investigation of transport modality in a university sample." Transportation research part A: policy and practice 57 (2013): 37-46.
Clear environment:
rm(list = ls())
Load packages used in the notebook:
library(readxl) library(tidyverse) #library(MASS) #library(reshape2) #library(plyr) #library(kableExtra) #library(gridExtra)
Load dataframe:
mc_modality <- read_excel("input-data-files/Number_Alternatives.xlsx") geocodes <- read_excel("input-data-files/Database+Geocodes.xlsx")
Retrieve geocodes from file Database+Geocodes.xlsx
:
geocodes <- geocodes %>% transmute(id = Respondent, LAT, LONG)
Note that the number of observations is 10 less than in file Number_Alternatives.xlsx
.
Select and pre-process variables from file Number_Alternatives.xlsx
(which does not have geocodes):
mc_modality <- mc_modality %>% transmute(id = Respondent, choice = factor(MODE, levels = c(1, 2, 3, 4), labels = c( "Active Travel", "HSR","Car", "GO")), shared_vehicle = factor(case_when(SHARE_ACCE == 1 ~ "Yes", TRUE == 0 ~ "No")), bicycle = factor(case_when(OWN_BIKE_B == 1 ~ "Yes", TRUE ~ "No")), gender = factor(case_when(GENDER_BIN == 1 ~ "Woman", TRUE ~ "Man")), age = AGE_SND * 10, status = factor(case_when(Faculty_St == 1 ~ "Staff or Faculty", Student == 1 ~ "Student")), care_giver = factor(case_when(PRIM_CARE_ == 1 ~ "Yes", TRUE ~ "No")), modality = factor(case_when(NUM_ALT == 1 ~ "One Mode", NUM_ALT == 2 ~ "Two Modes", NUM_ALT == 3 ~ "Three Modes", NUM_ALT == 4 ~ "Four Modes"), ordered = TRUE), Boring = case_when(BORING_SD == 1 ~ "STRONGLY DISAGREE", BORING_D == 1 ~ "DISAGREE", BORING_A == 1 ~ "AGREE", BORING_SA == 1 ~ "STRONGLY AGREE", TRUE ~ "NEUTRAL") %>% factor(levels = c("STRONGLY DISAGREE", "DISAGREE", "NEUTRAL", "AGREE", "STRONGLY AGREE"), ordered = TRUE), Buses_Comfortable = case_when(BUSES_CO_3 == 1 ~ "STRONGLY DISAGREE", BUSES_CO_2 == 1 ~ "DISAGREE", BUSES_CO_1 == 1 ~ "AGREE", BUSES_COMF == 1 ~ "STRONGLY AGREE", TRUE ~ "NEUTRAL") %>% factor(levels = c("STRONGLY DISAGREE", "DISAGREE", "NEUTRAL", "AGREE", "STRONGLY AGREE"), ordered = TRUE), Clean_Fuel = case_when(HYBRID_SD == 1 ~ "STRONGLY DISAGREE", HYBRID_D == 1 ~ "DISAGREE", HYBRID_A == 1 ~ "AGREE", HYBRID_SA == 1 ~ "STRONGLY AGREE", TRUE ~ "NEUTRAL") %>% factor(levels = c("STRONGLY DISAGREE", "DISAGREE", "NEUTRAL", "AGREE", "STRONGLY AGREE"), ordered = TRUE), Limit_Driving = case_when(LIMIT_SD == 1 ~ "STRONGLY DISAGREE", LIMIT_D == 1 ~ "DISAGREE", LIMIT_A == 1 ~ "AGREE", LIMIT_SA == 1 ~ "STRONGLY AGREE", TRUE ~ "NEUTRAL") %>% factor(levels = c("STRONGLY DISAGREE", "DISAGREE", "NEUTRAL", "AGREE", "STRONGLY AGREE"), ordered = TRUE), Productive_Time = case_when(PRODUCTI_3 == 1 ~ "STRONGLY DISAGREE", PRODUCTI_2 == 1 ~ "DISAGREE", PRODUCTI_1 == 1 ~ "AGREE", PRODUCTIVE == 1 ~ "STRONGLY AGREE", TRUE ~ "NEUTRAL") %>% factor(levels = c("STRONGLY DISAGREE", "DISAGREE", "NEUTRAL", "AGREE", "STRONGLY AGREE"), ordered = TRUE), Safe_Cycle = case_when(SAFE_CYC_3 == 1 ~ "STRONGLY DISAGREE", SAFE_CYC_2 == 1 ~ "DISAGREE", SAFE_CYC_1 == 1 ~ "AGREE", SAFE_CYCLE == 1 ~ "STRONGLY AGREE", TRUE ~ "NEUTRAL") %>% factor(levels = c("STRONGLY DISAGREE", "DISAGREE", "NEUTRAL", "AGREE", "STRONGLY AGREE"), ordered = TRUE), Shops_Services = case_when(SHOPS_SE_3 == 1 ~ "STRONGLY DISAGREE", SHOPS_SE_2 == 1 ~ "DISAGREE", SHOPS_SE_1 == 1 ~ "AGREE", SHOPS_SERV == 1 ~ "STRONGLY AGREE", TRUE ~ "NEUTRAL") %>% factor(levels = c("STRONGLY DISAGREE", "DISAGREE", "NEUTRAL", "AGREE", "STRONGLY AGREE"), ordered = TRUE), Someone_Else = case_when(SOMEONE__3 == 1 ~ "STRONGLY DISAGREE", SOMEONE__2 == 1 ~ "DISAGREE", SOMEONE__1 == 1 ~ "AGREE", SOMEONE_EL == 1 ~ "STRONGLY AGREE", TRUE ~ "NEUTRAL") %>% factor(levels = c("STRONGLY DISAGREE", "DISAGREE", "NEUTRAL", "AGREE", "STRONGLY AGREE"), ordered = TRUE), Stuck_Traffic = case_when(STUCK_TR_3 == 1 ~ "STRONGLY DISAGREE", STUCK_TR_2 == 1 ~ "DISAGREE", STUCK_TR_1 == 1 ~ "AGREE", STUCK_TRAF == 1 ~ "STRONGLY AGREE", TRUE ~ "NEUTRAL") %>% factor(levels = c("STRONGLY DISAGREE", "DISAGREE", "NEUTRAL", "AGREE", "STRONGLY AGREE"), ordered = TRUE), Transition = case_when(TRANSITI_3 == 1 ~ "STRONGLY DISAGREE", TRANSITI_2 == 1 ~ "DISAGREE", TRANSITI_1 == 1 ~ "AGREE", TRANSITION == 1 ~ "STRONGLY AGREE", TRUE ~ "NEUTRAL") %>% factor(levels = c("STRONGLY DISAGREE", "DISAGREE", "NEUTRAL", "AGREE", "STRONGLY AGREE"), ordered = TRUE), Travel_Alone = case_when(ALONE_SD == 1 ~ "STRONGLY DISAGREE", ALONE_D == 1 ~ "DISAGREE", ALONE_A == 1 ~ "AGREE", ALONE_SA == 1 ~ "STRONGLY AGREE", TRUE ~ "NEUTRAL") %>% factor(levels = c("STRONGLY DISAGREE", "DISAGREE", "NEUTRAL", "AGREE", "STRONGLY AGREE"), ordered = TRUE), Travel_Tiring = case_when(TIRING_SD == 1 ~ "STRONGLY DISAGREE", TIRING_D == 1 ~ "DISAGREE", TIRING_A == 1 ~ "AGREE", TIRING_SA == 1 ~ "STRONGLY AGREE", TRUE ~ "NEUTRAL") %>% factor(levels = c("STRONGLY DISAGREE", "DISAGREE", "NEUTRAL", "AGREE", "STRONGLY AGREE"), ordered = TRUE), Wasted_Time = case_when(WASTED_SD == 1 ~ "STRONGLY DISAGREE", WASTED_D == 1 ~ "DISAGREE", WASTED_A == 1 ~ "AGREE", WASTED_SA == 1 ~ "STRONGLY AGREE", TRUE ~ "NEUTRAL") %>% factor(levels = c("STRONGLY DISAGREE", "DISAGREE", "NEUTRAL", "AGREE", "STRONGLY AGREE"), ordered = TRUE), Rate_Immigrant = PER_IMMIGR/100, Rate_Non_Canadian = PER_NONCAN/100, Rate_Labor = LABOUR_RAT/100, Rate_Unemployment = UNEMPLOY/100, Rate_Married = PER_MARRIE, Mean_Age = AVG_AGE, Mean_Children = AVG_CHILDR, Median_HH_Income = MED_INCOME/10000, LITA, LUM, MAC_DISTANCE = MAC_DIST/1000, POPULATION_DENSITY = POP_DENSIT, SF_P_RATIO = SF_P_ratio)
mc_modality <- mc_modality %>% inner_join(geocodes, by = "id") %>% select(id, choice, LAT, LONG, everything())
Save data:
usethis::use_data(mc_modality, overwrite = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.