knitr::opts_chunk$set(echo = TRUE)
library(dplyr) # A Grammar of Data Manipulation
library(ggplot2) # Create Elegant Data Visualisations Using the Grammar of Graphics
library(kableExtra) # Construct Complex Table with 'kable' and Pipe Syntax
library(mlogit) # Multinomial Logit Models
data("Heating")
H <- mlogit.data(Heating, 
                 shape = "wide", 
                 choice = "depvar", 
                 varying = c(3:12))
print("If you are always trying to be normal, you will never know how amazing you can be.")
norm_pdf <- data.frame(x = seq(0.2, 
                               1.2, 
                               0.01)) %>%
  mutate(f = dnorm(x, 
                   mean = 0, 
                   sd = 0.5))

```rA segment of the normal curve with mean of zero and standard deviation 0.5"} ggplot(data = norm_pdf, aes(x = x, y = f)) + geom_rect(aes(xmin = 0.2, xmax = 1.2, ymin = 0.0, ymax = max(f)), fill = NA, color = "black") + geom_line() + theme(axis.text = element_text(size = 6))

```r
# Set seed for replicability (this defines a starting number from which the sequence of random numbers is generated )
set.seed(35739)

# Set number of random draws
r <- 100
sim_pdf <- data.frame(x = runif(r, 
                                # Draw values with uniform probability in the 
                                # interval of xmin and xmax
                                min(norm_pdf$x),
                                max(norm_pdf$x)), 
                      fsim = runif(r, 
                                   # Draw values with uniform probability in the
                                   # interval between zero and fmax
                                   0,
                                   max(norm_pdf$f)))

# Clear the seed
set.seed(NULL)  
sim_pdf <- sim_pdf %>%
  mutate(f = dnorm(x, 
                   mean = 0, 
                   sd = 0.5),
         status = ifelse(fsim <= f, 
                         "accept", 
                         "reject"))
ggplot(data = norm_pdf,
       aes(x = x, y = f)) +
  geom_point(data = sim_pdf,
             aes(x = x, y = fsim, 
                 color = status,
                 shape = status))  +
  geom_line() +
  geom_rect(aes(xmin = 0.2, xmax = 1.2,
                ymin = 0.0, ymax = max(f)),
            fill = NA,
            color = "black") 
# Proportion of "accepted" draws
prop_accept <- sim_pdf %>% filter(status == "accept") %>% nrow()/r

# Approximation of area under the curve
(max(norm_pdf$x) - min(norm_pdf$x)) * max(norm_pdf$f) * (prop_accept)

# Exact area
pnorm(max(norm_pdf$x), 
      mean = 0, 
      sd = 0.5) - pnorm(min(norm_pdf$x), 
                        mean = 0, 
                        sd = 0.5)
# Time the process
start_time_mnl <- Sys.time()

model3 <- mlogit(depvar ~ ic + oc, 
                 Heating, 
                 reflevel = "gc",
                 shape = "wide", 
                 choice = "depvar",  
                 varying = c(3:12))

# Time the process
end_time_mnl <- Sys.time()
estimation_time_mnl <- end_time_mnl - start_time_mnl
# Time the process
start_time_nl <- Sys.time()

nl2 <- mlogit(depvar ~ ic + oc, 
              H, 
              reflevel = "gc",
              nests = list(room = c( 'er', 'gr'), 
                           central = c('ec', 'gc', 'hp')),
              un.nest.el = TRUE, 
              steptol = 1e-12)

# Time the process
end_time_nl <- Sys.time()
estimation_time_nl <- end_time_nl - start_time_nl
# Time the process
start_time_prob1 <- Sys.time()

prob1 <- mlogit(depvar ~ ic + oc, 
                H, 
                reflevel = "gc", 
                probit = TRUE, 
                seed = 3245,
                R = 50)

# Time the process
end_time_prob1 <- Sys.time()
estimation_time_prob1 <- end_time_prob1 - start_time_prob1

stargazer::stargazer(prob1, 
                     header = FALSE,
                     single.row = TRUE,
                     title = "Estimation results: Multinomial Probit Model 1")
# Initialize a 4-by-4 matrix for the covariance terms
L1 <- matrix(0, 4, 4)

# Assign the coefficients to the matrix (lower part)
L1[!upper.tri(L1)] <- c(1, coef(prob1)[7:15])

# Multiply the lower part matrix by its transpose to fill the upper diagonal
L1 %*% t(L1)
H_increase <- H
H_increase[H_increase$alt == "gc", "ic"] <- 1.15 * H_increase[H_increase$alt == "gc", "ic"]
scenario_mnl <- data.frame(Policy = c("Do nothing", "15% increase"),
           rbind(apply(predict(model3,
                               newdata = H),
                       2, 
                       mean),
                 apply(predict(model3,
                               newdata = H_increase),
                       2, 
                       mean)))

scenario_mnl
Ratios_mnlogit <- data.frame((scenario_mnl[2,2:6] - scenario_mnl[1,2:6])/scenario_mnl[1,2:6] * 100)
row.names(Ratios_mnlogit) <- c("Percentage change in shares")  
Ratios_mnlogit
scenario_nl <- data.frame(Policy = c("Do nothing", "15% increase"),
                       rbind(apply(predict(nl2, newdata = H), 2, mean),
                             apply(predict(nl2, newdata = H_increase), 2, mean)))

scenario_nl
Ratios_nlogit <- data.frame((scenario_nl[2,2:6] - 
                               scenario_nl[1,2:6])/scenario_nl[1,2:6] * 100)
row.names(Ratios_nlogit) <- c("Percentage change in shares")  
Ratios_nlogit
scenario_prob1 = data.frame(Policy = c("Do nothing", "15% increase"),
                         rbind(apply(predict(prob1, 
                                             newdata = H), 
                                     2, 
                                     mean),
                               apply(predict(prob1, 
                                             newdata = H_increase),
                                     2, 
                                     mean)))
scenario_prob1
Ratios_probit <- data.frame((scenario_prob1[2,2:6] - 
                               scenario_prob1[1,2:6])/scenario_prob1[1,2:6] * 100)
row.names(Ratios_probit) <- c("Ratio of probabilities")  
Ratios_probit
# Time the process
start_time_prob2 <- Sys.time()

prob2 <- mlogit(depvar ~ ic + oc, 
                H, 
                reflevel = "gc", 
                probit = TRUE, 
                seed = 3245,
                R = 150)

# Time the process
end_time_prob2 <- Sys.time()
estimation_time_prob2 <- end_time_prob2 - start_time_prob2

stargazer::stargazer(prob2, 
                     header = FALSE,
                     single.row = TRUE,
                     title = "Estimation results: Multinomial Probit Model 2")
# Time the process
start_time_prob3 <- Sys.time()

prob3 <- mlogit(depvar ~ ic + oc, 
                H, 
                reflevel = "gc", 
                probit = TRUE, 
                seed = 3246,
                R = 50)

# Time the process
end_time_prob3 <- Sys.time()
estimation_time_prob3 <- end_time_prob3 - start_time_prob3

stargazer::stargazer(prob3, 
                     header = FALSE,
                     single.row = TRUE,
                     title = "Estimation results: Multinomial Probit Model 3")


paezha/discrtr documentation built on March 1, 2023, 5:25 p.m.