knitr::opts_chunk$set(echo = TRUE)

Introduction

Esta guía está diseñada para mostrar el funcionamiento del paquete spqdata para testar dependencia espacial en datos cualitativos

Datos

En esta guia se usaran dos conjuntos de datos como ejemplos:

library(spqdata)
data("Spain", package = "spqdata")
data("FastFood", package = "spqdata")

DGP

Es posible generar procesos espaciales con estructura utilizando la función dgp.spq de la misma manera que en @Ruiz2012

rm(list = ls())
set.seed(123)
N <- 100
cx <- runif(N)
cy <- runif(N)
coor <- cbind(cx,cy)
p <- c(1/6,3/6,2/6)
rho = 0.5
listw <- spdep::nb2listw(knn2nb(knearneigh(coor, k = 4)))
fx <- dgp.spq(list = listw, p = p, rho = rho)

Un simple plot

ggplot(data.frame(fx=fx,cx=cx,cy=cy), aes(x=cx, y=cy, color=fx)) + 
    geom_point(size=6) +
    theme_bw()

Q test

m-historias

Obtain m-surroundings with degree of overlapping r:

m = 3
r = 1
mh <- m.surround(x = cbind(cx,cy), m = m, r = r)
class(mh)

Métodos para la clase m_surr

Hay tres métodos desarrollados para esta clase: print, summary y plot

summary(mh)
plot(mh, type = 1)
control <- list (dtmaxknn = 10)
mh.prune <- m.surround(x = coor, m = m, r = r, control = control)
plot(mh.prune)

El test Q

q.test <- Q.test(fx = fx, coor = coor, m = 3, r = 1)

Métodos para spqtest

summary(q.test)
plot(q.test)

El test Q para un objeto sf

# Case 3: With a sf object with isolated areas
data("Spain")
f1 <- ~ MenWoman
q.test.sf <- Q.test(formula = f1, data = spain.sf, m = 3, r = 1)
plot(q.test.sf)

QMap test

El test QMap

p <- c(1/6,3/6,2/6)
rho = 0.5
QY1 <- dgp.spq(p = p, listw = listw, rho = rho)
rho = 0.8
QY2 <- dgp.spq(p = p, listw = listw, rho = rho)
dt = data.frame(QY1,QY2)
m = 3
r = 1
formula <- ~ QY1 + QY2
control <- list(dtmaxknn = 10)
qmap <- Q.map.test(formula = formula, data = dt, coor = coor, m = m, r = r, type ="combinations", control = control)

Métodos para clase qmap

print(qmap[[1]])
plot(qmap, ci=.6)

Runs tests

Global Runs test

listw <- knearneigh(coor, k = 3)
srq <- sp.runs.test(fx = fx, listw = listw)

Metodos para clase spruntest

print(srq)
plot(srq)

Local Runs test

Local Runs test asintótico

lsrq <- local.sp.runs.test(fx = fx, listw = listw, alternative = "less")
print(lsrq)
plot(lsrq, sig = 0.05)

Local Runs test boots

data(Spain)
listw <- spdep::poly2nb(as(spain.sf,"Spatial"), queen = FALSE)
plot(spain.sf["MenWoman"])
formula <- ~ MenWoman
# Boots Version
lsrq <- local.sp.runs.test(formula = formula, data = spain.sf, listw = listw, distr ="bootstrap", nsim = 199)
plot(lsrq, sf = spain.sf, sig = 0.10)

scan test

scan bernoulli

formula <- ~ MenWoman
scan.spain <- scan.test(formula = formula, data = spain.sf, case="men", nsim = 99, distr = "bernoulli")
print(scan.spain)

scan multinomial

data(FastFood)
formula <- ~ Type
scan.fastfood <- scan.test(formula = formula, data = FastFood.sf, nsim = 99, distr = "multinomial", windows="elliptic", nv = 100)
print(scan.fastfood)

metodos scan

summary(scan.fastfood)
plot(scan.spain, sf = spain.sf)
# plot.scantest(scan.fastfood, sf = FastFood.sf)

Similarity test

El papel de @Farber2014 desarrolla un test de similaridad

Test de similaridad

la función similarity.test calcula el test de similaridad tanto para distribición asintótica como por remuestreo permutacional.

coor <- cbind(FastFood.sf$Lon,FastFood.sf$Lat)
listw <- spdep::knearneigh(coor, k = 4)
formula <- ~ Type
similarity <- similarity.test(formula = formula, data = FastFood.sf, listw = listw)
print(similarity)

Join-count test

distribución asintótica

f1 <- ~ Older65 + MenWoman
jc1 <- jc.test(formula = f1, data = spain.sf, distr = "asymptotic", alternative = "greater", zero.policy = TRUE)
summary(jc1)

distribución Monte Carlo

jc1 <- jc.test(formula = f1, data = spain.sf, distr = "mc", alternative = "greater", zero.policy = TRUE)
summary(jc1)

References



paezha/spqdata documentation built on Dec. 22, 2021, 5:24 a.m.