ClusterCV: Estimating Number of Cluster with Gabriel Cross-validation

Description Usage Arguments Value

View source: R/ClusterCV.R

Description

This function determines the number of clusters using Gabriel cross-validation, with the option of using an adjustment for when dimensional correlation is high.

Usage

1
2
3
4
5
6
7
8
9
ClusterCV(
  input.data,
  kclust.min,
  kclust.max,
  nfold.r,
  nfold.c,
  adjusted = F,
  alg = "k.means"
)

Arguments

input.data
  • data matrix

kclust.min
  • minimum number of clusters

kclust.max
  • maximum number of clusters

nfold.r
  • number of folds row-wise

nfold.c
  • number of folds column-wise

adjusted
  • T/F, default is FALSE

alg
  • clustering algorithm used k-means or spectral, with k-means as the default

Value

Returns a list of the final estimation of the number of clusters that minimizes the cross-validation error and the cluster assignments for each observation.


pangoria/clusterEstimation documentation built on Dec. 22, 2021, 6:39 a.m.