knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) knitr::opts_chunk$set(fig.width=6, fig.height=6, dpi=300,echo = FALSE) knitr::opts_chunk$set(fig.pos = "H", out.extra = "")
A small example using the smoking data set, containing normalized transcript measurements for 51 subjects (23 "never-smoked" and 34 "smokers") and 22283 transcripts of lung tissue. See @Spira.et.al.2004
I have removed that data set temporarily until I solve a problem with upload the package to CRAN
library(RFlocalfdr.data) data(smoking) ?smoking y<-smoking$y smoking_data<-smoking$rma y.numeric <-ifelse((y=="never-smoked"),0,1)
if (!require("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install("GEOquery") BiocManager::install("annotate") install.packages("geneExpressionFromGEO") library(geneExpressionFromGEO) DF1 <- getGeneExpressionFromGEO("GSE994", FALSE, FALSE) #retrieveGeneSymbols, verbose = FALSE) aa<-match(gsub("([A-Z0-9]*).*","\\1", rownames(smoking_data)), colnames(DF1)) all.equal(aa,1:57) #[1] TRUE temp <- t(DF1[1:57]) #but class temp is a data.frame not a ‘AffyBatch’ object. So how do we normalize it? ## library(affy) ## rma.data <- rma(data) ## or ## rma.data <- expresso(data, ## bgcorrect.method = "rma", ## normalize.method = "quantiles", ## pmcorrect.method = "pmonly", ## summary.method = "medianpolish")
library(ranger) rf1 <-ranger(y=y.numeric ,x=smoking_data,importance="impurity",seed=123, num.trees = 10000, classification=TRUE) t2 <-count_variables(rf1) imp<-log(rf1$variable.importance) #png("./supp_figures/smoking_log_importances.png") plot(density(imp),xlab="log importances",main="") #dev.off()
# starting from a randomForest model library(RFlocalfdr) library(randomForest) sert.seed(123) rf2 <-randomForest(y=factor(y.numeric) ,x=smoking_data,importance=TRUE, ntree = 10000) imp.rf2 <- log(rf2$importance[,"MeanDecreaseGini"]) t2.rf2 <-varUsed(rf2) plot(density(imp.rf2),xlab="log importances",main="") cutoffs <- c(2,3,4,5) res.con<- determine_cutoff(imp.rf2,t2.rf2 ,cutoff=cutoffs,plot=c(2,3,4,5)) plot(cutoffs,res.con[,3],pch=15,col="red",cex=1.5,ylab="max(abs(y - t1))") cutoffs[which.min(res.con[,3])] #2
```r, and each block consists of correlated (identical variables).", fig.align="center", out.width = '50%'} knitr::include_graphics("./supp_figures/smoking_log_importances.png")
# Determine a cutoff to get a unimodal density. See \@ref(fig:log_importances) for the log importances. They are clearly multimodal and we try to determine a cutoff so that we are left with a unimodal distribution. ```r cutoffs <- c(2,3,4,5) #png("./supp_figures/smoking_data_determine_cutoff.png") res.con<- determine_cutoff(imp,t2,cutoff=cutoffs,plot=c(2,3,4,5)) #dev.off() #png("./supp_figures/smoking_data_determine_cutoffs_2.png") plot(cutoffs,res.con[,3],pch=15,col="red",cex=1.5,ylab="max(abs(y - t1))") #dev.off() cutoffs[which.min(res.con[,3])]
We select a cutoff of 3 and fit the RFlocalfdr model
temp<-imp[t2 > 3] temp <- temp - min(temp) + .Machine$double.eps qq <- plotQ(temp,debug.flag = 1) ppp<-run.it.importances(qq,temp,debug.flag = 0) #png("./supp_figures/smoking_significant_genes.png") #aa<-significant.genes(ppp,temp,cutoff=0.05,do.plot=1) aa<-significant.genes(ppp,temp,cutoff=0.05,debug.flag=0,do.plot=TRUE,use_95_q=TRUE) #dev.off() length(aa$probabilities) # 17 aa<-significant.genes(ppp,temp,cutoff=0.05,debug.flag=0,do.plot=TRUE,use_95_q=FALSE) length(aa$probabilities) # 19
The option do.plot=1 returns a plot containing the
The option do.plot=2 returns the same plot with the addition of
sessionInfo()
devtools::install_github("parsifal9/RFlocalfdr", build_vignettes = TRUE, force = TRUE) library(RFlocalfdr) data(smoking) ?smoking y<-smoking$y smoking_data<-smoking$rma y.numeric <-ifelse((y=="never-smoked"),0,1) library(ranger) rf1 <-ranger(y=y.numeric ,x=smoking_data,importance="impurity",seed=123, num.trees = 10000, classification=TRUE) t2 <-count_variables(rf1) imp<-log(rf1$variable.importance) #png("./supp_figures/smoking_log_importances.png") plot(density(imp),xlab="log importances",main="") #dev.off() cutoffs <- c(2,3,4,5) #png("./supp_figures/smoking_data_determine_cutoff.png") res.con<- determine_cutoff(imp,t2,cutoff=cutoffs,plot=c(2,3,4,5)) #dev.off() #png("./supp_figures/smoking_data_determine_cutoffs_2.png") plot(cutoffs,res.con[,3],pch=15,col="red",cex=1.5,ylab="max(abs(y - t1))") #dev.off() cutoffs[which.min(res.con[,3])] temp<-imp[t2 > 3] temp <- temp - min(temp) + .Machine$double.eps qq <- plotQ(temp,debug.flag = 1) ppp<-run.it.importances(qq,temp,debug.flag = 0) #png("./supp_figures/smoking_significant_genes.png") #aa<-significant.genes(ppp,temp,cutoff=0.05,do.plot=1) aa<-significant.genes(ppp,temp,cutoff=0.05,debug.flag=0,do.plot=TRUE,use_95_q=TRUE) #dev.off() length(aa$probabilities) # 17 -- Roc gets 30 aa<-significant.genes(ppp,temp,cutoff=0.05,debug.flag=0,do.plot=TRUE,use_95_q=FALSE) length(aa$probabilities) # 19-- Roc gets 30
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.