knitr::opts_chunk$set( collapse = TRUE, comment = "#>", echo=FALSE, warning=FALSE, message=FALSE, fig.height=8, fig.width=10 )
library(covid19br) library(tidyverse) library(covid19br) library(geobr) library(cowplot) library(knitr) library(DT) library(ggrepel) # Data for comparisons: used_date <- max(covid_br$date) n_sus <- covid_br %>% filter(date == used_date) %>% pull(suspected_cases) n_des <- covid_br %>% filter(date == used_date) %>% pull(not_confirmed_cases) n_total <- covid_br %>% filter(date == used_date) %>% pull(confirmed_cases) n_death <- covid_br %>% filter(date == used_date) %>% pull(deaths) # raw data tab_stat <- covid_states %>% filter(date == used_date) %>% dplyr::select(Estado = state, "Casos suspeitos" = suspected_cases, "Casos confirmados" = confirmed_cases, "Casos descartados" = not_confirmed_cases) %>% arrange(Estado) %>% as.data.frame()
NOTAS:
As análises abaixo representam apenas o número de casos confirmados pelo Ministério da Saúde, portanto, não se pode concluir uma relação direta destes números com o número real de pessoas infectadas por covid-19.
Os resultados apresentados abaixo foram atualizados na data:r used_date
r n_sus
r n_total
r n_des
r n_death
library(covid19br) # calculate doubling time: mod10 <- lm(log10(confirmed_cases + 1) ~ date, covid_br) modlog <- lm(log(confirmed_cases + 1) ~ date, covid_br) dtime <- log(2)/modlog$coef[2] # time to double dtime10 <- 1/mod10$coef[2] # time to x 10 # Plots------ # Curva de crescimento no Brasil g2 <- ggplot(covid_br, aes(y = confirmed_cases, x = date, label = confirmed_cases)) + geom_area(fill = "tomato", alpha = 0.2) + geom_line(color = "tomato", size = 3) + geom_label() + scale_x_date(date_breaks = "3 days", date_labels = "%d %b") + geom_segment(aes(x = as.Date("2020-02-26"), y = 150, xend = as.Date ("2020-02-26"), yend = 5), arrow = arrow(type = "closed", length = unit(0.3, "cm"))) + annotate(geom='text', x = as.Date("2020-02-26"), y = 160, label = "Primeiro caso registrado (26 of Feb - 2020)", hjust = 0, size = 7) + theme_cowplot(font_size = 20) + labs(y = "Casos confirmados de covid-19", x = "Date", title = "covid-19", subtitle = ("O número de casos cresce exponencialmente"), caption = paste("Source: Ministério da Saúde | updated", used_date)) + theme( plot.title = element_text(size = 22), plot.subtitle = element_text(size = 18), plot.caption = element_text(size = 12, hjust = 1)) ;g2
# Tempo para dobrar o número de casos g3 <- ggplot(covid_br, aes(y = confirmed_cases + 1, x = date)) + geom_point(color = "black", size = 5, shape = 21, fill = "tomato", alpha = .75) + scale_y_continuous(trans = "log10") + geom_smooth(method = lm, color = "tomato") + scale_x_date(date_breaks = "3 days", date_labels = "%d %b") + theme_cowplot(font_size = 20) + labs(y = "Casos confirmados de covid-19 [log10]", x = "Date", title = "covid-19", subtitle = paste("A cada ", round(dtime10, 1), "dias o número de casos aumenta 10 vezes!"), caption = paste("Source: Ministério da Saúde | updated", used_date)) + theme( plot.title = element_text(size = 22), plot.subtitle = element_text(size = 18), plot.caption = element_text(size = 12, hjust = 1)) ;g3
covid_states %>% filter(date == used_date) %>% arrange(desc(confirmed_cases)) %>% ungroup() %>% slice(1:5) %>% pull(state) %>% as.character() -> top_state ggplot() + geom_line(data = covid_states %>% filter(state %in% top_state), aes(y = confirmed_cases, x = date, color = state), size = 1.5, alpha = .75) + geom_point(data = covid_states %>% filter(state %in% top_state & date == used_date), aes(y = confirmed_cases, x = date, color = state), size = 4, alpha = .75) + theme_cowplot(font_size = 20) + scale_color_viridis_d(name = "", option = "D", direction = -1) + labs(y = "Casos confirmados (covid-19)", x = "Data", title = "covid-19 | Brasil", subtitle = "Crescimento do número de casos por estado") + theme(legend.position = NULL) # Compare between states ggplot(covid_states %>% filter(date == used_date), aes(y = confirmed_cases, x = reorder(state, confirmed_cases), label = confirmed_cases)) + geom_col(fill = "tomato", color = "red", alpha = .3, size = 0.5) + geom_label() + coord_flip() + theme_cowplot(font_size = 20) + labs(y = "Casos conirmados de covid-19", x = "")
tab_stat %>% datatable(rownames = FALSE, options = list(pageLength = 30))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.