R/distdist.R

#' distdist: Distances on Distributions
#'
#' Defines an S4 class for arbitrary discrete distributions and S4 methods
#' for divergences, distances, and metrics between distributions. Many of the
#' functions described in Chapter 14 of \emph{Encyclopedia of Distances}
#' (Deza & Deza, 2009) are provided here.
#'
#' @section Functions related to the \emph{p}-metric:
#'   \itemize{
#'     \item \code{\link{pMetric}}
#'     \item \code{\link{Manhattan}}
#'     \item \code{\link{TotalVariation}}
#'     \item \code{\link{Euclidean}}
#'   }
#'
#' @section Functions related to the fidelity similarity (also known as Bhattacharya coefficient or Hellinger affinity):
#'   \itemize{
#'     \item \code{\link{Fidelity}}
#'     \item \code{\link{Bhattacharya1}}
#'     \item \code{\link{Bhattacharya2}}
#'     \item \code{\link{Hellinger}}
#'     \item \code{\link{JeffriesMatusita}}
#'   }
#'
#' @section Functions related to the information-theoretic deviation:
#'   \itemize{
#'     \item \code{\link{KullbackLeibler}}
#'     \item \code{\link{JensenShannon}}
#'     \item \code{\link{Jeffrey}}
#'     \item \code{\link{Topsoe}}
#'   }
#'
#' @importFrom magrittr %>%
#' @importFrom rlang .data
#' @importFrom tibble as_tibble
#'
#' @docType package
#' @name distdist-package
NULL
patrickreidy/distdist documentation built on May 22, 2019, 12:40 p.m.