#' distdist: Distances on Distributions
#'
#' Defines an S4 class for arbitrary discrete distributions and S4 methods
#' for divergences, distances, and metrics between distributions. Many of the
#' functions described in Chapter 14 of \emph{Encyclopedia of Distances}
#' (Deza & Deza, 2009) are provided here.
#'
#' @section Functions related to the \emph{p}-metric:
#' \itemize{
#' \item \code{\link{pMetric}}
#' \item \code{\link{Manhattan}}
#' \item \code{\link{TotalVariation}}
#' \item \code{\link{Euclidean}}
#' }
#'
#' @section Functions related to the fidelity similarity (also known as Bhattacharya coefficient or Hellinger affinity):
#' \itemize{
#' \item \code{\link{Fidelity}}
#' \item \code{\link{Bhattacharya1}}
#' \item \code{\link{Bhattacharya2}}
#' \item \code{\link{Hellinger}}
#' \item \code{\link{JeffriesMatusita}}
#' }
#'
#' @section Functions related to the information-theoretic deviation:
#' \itemize{
#' \item \code{\link{KullbackLeibler}}
#' \item \code{\link{JensenShannon}}
#' \item \code{\link{Jeffrey}}
#' \item \code{\link{Topsoe}}
#' }
#'
#' @importFrom magrittr %>%
#' @importFrom rlang .data
#' @importFrom tibble as_tibble
#'
#' @docType package
#' @name distdist-package
NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.