R/fittedDS.R

#'
#' @title Partial Computation for Model Fitted Values
#' @description Calculates the fitted values in each data node.
#' @details Considering \code{y} as a response variable and x as study variable, the fitted values are the y-values that
#' would expect for the given x-values according to the best-fitting straight line.
#'
#' @param beta is a list of the regression coefficients.
#' @param formula a string character to be transformed as an object of class \code{formula}.
#' @param x is a study variable.
#'
#' @return a vector of fitted values.
#'
#' @section Dependencies:
#' \code{\link{getVarbyFormula}}
#'
#' @author Paula R. Costa e Silva
#' @export
#'

fittedDS <- function(beta, formula=NULL, x=NULL) {

  #Data transformations
  if(class(beta)=="character"){
    beta.reg.aux <- as.numeric(unlist(strsplit(beta, split="x")))
    beta.reg <- data.matrix(beta.reg.aux)
  } else {
    beta.reg <- beta
  }

  #Retrive the values and variables x
  if(is.null(formula)) {
    bind.x <- data.matrix(x)
  }
  if (is.null(x)) {
    bindxy <- getVarbyFormula(formula)
    bindxy <- data.frame(bindxy)
    #bindxy <- bindxy[!complete.cases(bindxy[[3]]),]
    # #rowNames <- row.names(bindxy)
    # bind.x <- data.matrix(bindxy$x)
  }

  #Formula to calculate the fitted values
  #y.hat <- bind.x %*% beta.reg
  #row.names(y.hat) <- rowNames

  return(bindxy)

}
paularaissa/distStatsServer documentation built on June 19, 2019, 12:43 a.m.