| gp_pwm | R Documentation | 
Uses the methodology of Hosking and Wallis (1987) to estimate the parameters of the generalised Pareto (GP) distribution.
gp_pwm(gp_data, u = 0)
| gp_data | A numeric vector of raw data, assumed to be a random sample from a probability distribution. | 
| u | A numeric scalar.  A threshold.  The GP distribution is fitted to
the excesses of  | 
A list with components
est: A numeric vector.  PWM estimates of GP parameters
\sigma (scale) and \xi (shape).
se: A numeric vector.  Estimated standard errors of
\sigma and \xi.
cov: A numeric matrix.  Estimate covariance matrix of the
the PWM estimators of \sigma and \xi.
Hosking, J. R. M. and Wallis, J. R. (1987) Parameter and Quantile Estimation for the Generalized Pareto Distribution. Technometrics, 29(3), 339-349. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.2307/1269343")}.
gp for details of the parameterisation of the GP
distribution.
u <- quantile(gom, probs = 0.65)
gp_pwm(gom, u)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.