Machine Learning models are widely used and have various applications in classification or regression tasks. Due to increasing computational power, availability of new data sources and new methods, ML models are more and more complex. Models created with techniques like boosting, bagging of neural networks are true black boxes. It is hard to trace the link between input variables and model outcomes. They are used because of high performance, but lack of interpretability is one of their weakest sides. In many applications we need to know, understand or prove how input variables are used in the model and what impact do they have on final model prediction. 'DALEX2' is a collection of tools that help to understand how complex predictive models are working. 'DALEX2' is a part of 'DrWhy' universe: tools for Explanation, Exploration and Visualisation for Predictive Models.
Package details 


Maintainer  
License  GPL 
Version  0.9 
URL  https://ModelOriented.github.io/DALEX2/ 
Package repository  View on GitHub 
Installation 
Install the latest version of this package by entering the following in R:

Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.