| broken.glm | R Documentation | 
Breaking Down of Model Predictions for glm models
## S3 method for class 'glm'
broken(
  model,
  new_observation,
  ...,
  baseline = 0,
  predict.function = stats::predict.glm
)
| model | a glm model | 
| new_observation | a new observation with columns that corresponds to variables used in the model | 
| ... | other parameters | 
| baseline | the origin/baseline for the breakDown plots, where the rectangles start. It may be a number or a character "Intercept". In the latter case the orgin will be set to model intercept. | 
| predict.function | function that will calculate predictions out of model (typically  | 
an object of the broken class
# example for wine data
wine$qualityb <- factor(wine$quality > 5.5, labels = c("bad", "good"))
modelg <- glm(qualityb~fixed.acidity + volatile.acidity + citric.acid +
              residual.sugar + chlorides + free.sulfur.dioxide +
              total.sulfur.dioxide + density + pH + sulphates + alcohol,
    data=wine, family = "binomial")
new_observation <- wine[1,]
br <- broken(modelg, new_observation)
logit <- function(x) exp(x)/(1+exp(x))
plot(br, logit)
# example for HR_data
model <- glm(left~., data = HR_data, family = "binomial")
explain_1 <- broken(model, HR_data[1,])
explain_1
plot(explain_1)
plot(explain_1, trans = function(x) exp(x)/(1+exp(x)))
explain_2 <- broken(model, HR_data[1,], predict.function = betas)
explain_2
plot(explain_2, trans = function(x) exp(x)/(1+exp(x)))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.