ddst.uniform.test | R Documentation |
Performs data driven smooth tests for simple hypothesis of uniformity on [0,1]. Embeding null model into the original exponential family introduced by Neyman (1937).
ddst.uniform.test(
x,
base = ddst.base.legendre,
d.n = 10,
c = 2.4,
nr = 1e+05,
compute.p = TRUE,
alpha = 0.05,
compute.cv = TRUE,
...
)
x |
a (non-empty) numeric vector of data |
base |
a function which returns an orthonormal system, possible choice: |
d.n |
an integer specifying the maximum dimension considered, only for advanced users |
c |
a calibrating parameter in the penalty in the model selection rule |
nr |
an integer specifying the number of runs for a p-value and a critical value computation if any |
compute.p |
a logical value indicating whether to compute a p-value or not |
alpha |
a significance level |
compute.cv |
a logical value indicating whether to compute a critical value corresponding to the significance level alpha or not |
... |
further arguments |
An object of class htest
statistic |
the value of the test statistic. |
parameter |
the number of choosen coordinates (k). |
method |
a character string indicating the parameters of performed test. |
data.name |
a character string giving the name(s) of the data. |
p.value |
the p-value for the test, computed only if |
Inglot, T., Ledwina, T. (2006). Towards data driven selection of a penalty function for data driven Neyman tests. Linear Algebra and its Appl. 417, 579–590.
Ledwina, T. (1994). Data driven version of Neyman's smooth test of fit. J. Amer. Statist. Assoc. 89 1000-1005.
Neyman, J. (1937). ‘Smooth test’ for goodness of fit. Skand. Aktuarietidskr. 20, 149-199.
set.seed(7)
# H0 is true
z <- runif(80)
## Not run:
t <- ddst.uniform.test(z, compute.p = TRUE, d.n = 10)
t
plot(t)
# known fixed alternative
z <- rnorm(80,10,16)
t <- ddst.uniform.test(pnorm(z, 10, 16), compute.p = TRUE, d.n = 10)
t
plot(t)
# H0 is false
z <- rbeta(80,4,2)
(t <- ddst.uniform.test(z, compute.p = TRUE, d.n = 10))
t$p.value
plot(t)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.