Physical biogeochemical oceanographic model
Regional Ocean Modelling Systen (ROMS)
Curvilinear grid at 3km x 3km resolution
We interpolate to regular grids
\ Model output provided by Angelica Peña at the Institute of Ocean Sciences (Fisheries and Oceans Canada).
\ \footnotesize Peña, M.A., Fine, I. and Callendar, W. 2019. Interannual variability in primary production and shelf-offshore transport of nutrients along the northeast Pacific Ocean margin. Deep-Sea Research II, doi:10.1016/j.dsr2.2019.104637. \normalsize
Original mapping:
clipped to Canada's Pacific Exclusive Economic Zone
Inshore (2 km x 2 km) and offshore (6 km x 6 km)
40,480 cells
Monthly from 1993-2019
New additional mapping:
r colorize("covers full domain (into US waters)", "red")
r colorize("2 km x 2km grid throughout", "red")
r colorize("161,025 cells", "red")
Monthly from 1993-2019
r colorize("New grid also used for HOTSSea outputs, and has interpolated
depths", "red")
The variables are:
For applicable variables these are given for
bccm_data for available variables
bccm_data
bccm_data_full for available variables
bccm_data_full
The data are saved as sf
(simple feature) objects in a separate GitHub repository pacea-data
(https://github.com/pbs-assess/pacea-data).
\
One-time download to local machine (will take several minutes):
bccm_all_variables() Downloading all BCCM data may take many minutes. Files will be downloaded to pacea_cache directory: C:\Users\TAIT\AppData\Local/pacea/Cache Would you like to continue? 1: Yes 2: No Selection:
Average of pH from 100 m to sea bottom:
> bccm_avg100mtoBot_ph() Simple feature collection with 33642 features and 324 fields Geometry type: POLYGON Dimension: XY Bounding box: xmin: 164671.6 ymin: 163875 xmax: 1097612 ymax: 1103653 Projected CRS: NAD83 / BC Albers # A tibble: 33,642 × 325 `1993_1` `1993_2` `1993_3` `1993_4` ... geometry <dbl> <dbl> <dbl> <dbl> ... <POLYGON [m]> 1 7.83 7.87 7.88 7.90 ... ((575612.5 1103653, 577612.5 ~ 2 7.83 7.87 7.88 7.90 ... ((577612.5 1103653, 579612.5 ~ 3 7.83 7.87 7.88 7.90 ... ((579612.5 1103653, 581612.5 ~ 4 7.83 7.87 7.88 7.89 ... ((581612.5 1103653, 583612.5 ~ 5 7.79 7.82 7.84 7.82 ... ((619612.5 1103653, 621612.5 ~ 6 7.79 7.82 7.83 7.82 ... ((621612.5 1103653, 623612.5 ~ # i 33,636 more rows # i 320 more variables: ...
```{asis, echo = more_details}
```r ?bccm_surface_oxygen
BCCM environmental variable data Description Loading and/or downloading British Columbia continental margin (BCCM) model data for the BC Pacific region to local drive. To download all BCCM data, use the function 'bccm_all_variables()'. See help page for details ('?bccm_all_variables'). Usage bccm_bottom_oxygen(update = FALSE, ask = interactive(), force = FALSE) bccm_bottom_ph(update = FALSE, ask = interactive(), force = FALSE) bccm_bottom_salinity(update = FALSE, ask = interactive(), force = FALSE) ... Arguments update Logical. Would you like to check for a newer version of the layer? ask Logical. Should the user be asked before downloading the data to local cache? Defaults to the value of interactive(). force Logical. Should download of data be forced? Overrides 'ask' argument if TRUE. Format A simple features dataframe. ...
plot(bccm_surface_temperature(), months.plot = c("april", "july"), years.plot = c(2013, 2016, 2019))
plot(bccm_surface_ph())
```{asis, echo = long_talk}
Built in functions to calculate 30-year climatology
```r ?calc_clim
Description Function for calculating climatology of a pacea data object. Usage calc_clim( data, clim_years = c(1991:2020), clim_time = "month", time_period_return = "all" ) Arguments data pacea data object: BCCM, OISST, buoy_sst data only clim_years climatology period years clim_time time units (e.g. month) to summarize climatologies time_period_return vector of value(s) for the specific time units to estimate climatologies (e.g. '4' for week 4 or April). Set to equal 'all' for all time units. ...
```{asis, echo = long_talk}
Output with each climatology time unit (e.g. week, month)
```r calc_clim(bccm_surface_temperature())
Simple feature collection with 486960 features and 4 fields Geometry type: POLYGON Dimension: XY Bounding box: xmin: 164671.6 ymin: 163875 xmax: 1097612 ymax: 1103653 Projected CRS: NAD83 / BC Albers # A tibble: 486,960 x 5 month clim_value clim_sd clim_n geometry <dbl> <dbl> <dbl> <int> <POLYGON [m]> 1 1 5.80 0.721 27 ((575612.5 1103653, 5776~ 2 2 5.47 0.610 27 ((575612.5 1103653, 5776~ 3 3 5.64 0.627 27 ((575612.5 1103653, 5776~ 4 4 6.61 0.623 27 ((575612.5 1103653, 5776~ 5 5 8.49 0.732 27 ((575612.5 1103653, 5776~ 6 6 10.5 0.662 27 ((575612.5 1103653, 5776~ # i 486,954 more rows # i Use `print(n = ...)` to see more rows
```{asis, echo = long_talk} \ And we can also use this with the OISST and buoy data
```r calc_clim(oisst_7day) calc_clim(buoy_sst)
```{asis, echo = long_talk}
Built in functions to calculate anomaly to the 30 year climatology
```r ?calc_anom
Description Function for calculating climatology of a pacea data object. Usage calc_anom( data, clim_years = c(1991:2020), clim_time = "month", time_period_return = "all", years_return ) Arguments data pacea data object: BCCM, OISST, buoy_sst data only clim_year climatology period years clim_time time units (e.g. month) to summarize climatologies time_period_return vector of value(s) for the specific time units to estimate climatologies (e.g. '4' for week 4 or April). Set to equal 'all' for all time units. years_return vector of value(s) to return the years of interest. Defaults to all years in input data ...
```{asis, echo = long_talk}
```r if(!exists("anom_dat")){ anom_dat <- calc_anom(bccm_surface_temperature(), time_period_return = "April", years_return = c(2010, 2015)) }
```{asis, echo = long_talk} Specify year(s) and time period (e.g. week, month) to return -- otherwise all.
```r anom_dat <- calc_anom(bccm_surface_temperature(), time_period_return = "April", years_return = c(2010, 2015)) Simple feature collection with 40580 features and 2 fields Geometry type: POLYGON Dimension: XY Bounding box: xmin: 164671.6 ymin: 163875 xmax: 1097612 ymax: 1103653 Projected CRS: NAD83 / BC Albers # A tibble: 40,580 x 3 `2010_4` `2015_4` geometry <dbl> <dbl> <POLYGON [m]> 1 0.114 1.09 ((575612.5 1103653, 577612.5 1103653, 577612.5 1101653, 575612.5 1101653, 575~ 2 0.124 1.08 ((577612.5 1103653, 579612.5 1103653, 579612.5 1101653, 577612.5 1101653, 577~ 3 0.150 1.07 ((579612.5 1103653, 581612.5 1103653, 581612.5 1101653, 579612.5 1101653, 579~ 4 0.204 1.08 ((581612.5 1103653, 583612.5 1103653, 583612.5 1101653, 581612.5 1101653, 581~ 5 0.204 1.07 ((583612.5 1103653, 585612.5 1103653, 585612.5 1101653, 583612.5 1101653, 583~ 6 0.244 1.08 ((585612.5 1103653, 587612.5 1103653, 587612.5 1101653, 585612.5 1101653, 585~ # i 40,574 more rows # i Use `print(n = ...)` to see more rows
plot(anom_dat, months.plot = "April", years.plot = c(2010, 2015))
```{asis, echo = long_talk}
Geospatial functions in vignettes
area_mean()
estimates inshore and offshore spatial mean (200m isobath)
Masking/clipping specific areas (e.g. fishing regions of interest)
Various other data visualisation examples ```
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.