View source: R/plot_stacked_comp.R
plot_stacked_comp | R Documentation |
Stacked composition plot
plot_stacked_comp(
x_var,
grouping_var,
facet_var = NULL,
ssdr,
comp_dat,
pred_dat
)
x_var |
Explanatory variable within pred_dat to be plotted on x-axis (must be continuous). |
grouping_var |
Character or factor variable within pred_dat that was used to generate composition estimates. |
facet_var |
Optional character or factor variable within pred_dat corresponding to categorical main effects in fitted model. |
ssdr |
Parameter estimates generated by stockseasonr::fit_stockseasonr()$ssdr. |
comp_dat |
Composition dataframe; each row represents a sampling event (e.g. genetic samples collected from a given day and region) |
pred_dat |
Dataframe of fixed effects composition predictions |
Stacked ribbon plot representing trends in mean composition with optional facets.
dum_pred <- expand.grid(
month_n = seq(1, 12, by = 0.1),
region = unique(comp_ex$region)
)
# model fitting will take several seconds
m1 <- fit_stockseasonr(
comp_formula = agg ~ 1 + region +
s(month_n, bs = "tp", k = 4, m = 2) +
(1 | year),
comp_dat = comp_ex,
pred_dat = dum_pred,
model = "dirichlet",
random_walk = TRUE,
fit = TRUE,
nlminb_loops = 2, newton_loops = 1
)
plot_stacked_comp(x_var = "month_n", grouping_var = "agg",
facet_var = "region", ssdr = m1$ssdr, comp_dat = comp_ex,
pred_dat = dum_pred)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.