# wfs_autoplot <- function(trained_workflowset, metric = "roc_auc", n = 1, all_metrics = TRUE, rank_by_metric = FALSE, ...) {
# minimize <- c("mn_log_loss", "rmse", "mae", "mape", "mase")
#
# p_df <-
# collect_metrics(trained_workflowset) %>%
# separate(wflow_id, into = c("recipe", "model_type"), sep = "_", remove = F, extra = "merge") %>%
# mutate(
# metric_name = str_to_upper(.metric),
# metric_name = case_when(
# metric_name == "ROC_AUC" ~ "Area Under the ROC-curve (ROC AUC)",
# metric_name == "RMSE" ~ "Root Mean Square Error (RMSE)",
# metric_name == "SPEC" ~ "Specificity",
# metric_name == "SENS" ~ "Sensitivity",
# metric_name == "ACCURACY" ~ "Accuracy",
# metric_name == "MN_LOG_LOSS" ~ "Mean log loss",
# metric_name == "RSQ" ~ "R-Squared",
# metric_name == "MAE" ~ "Mean absolutt error",
# metric_name == "MASE" ~ "Mean absolutt squared error",
# TRUE ~ metric_name
# ),
# metric_name = str_replace_all(metric_name, "\\_", " ")
# )
#
#
#
# p_df_min <- p_df %>%
# filter(.metric %in% minimize) %>%
# group_by(wflow_id, .metric) %>%
# slice_min(order_by = mean, n = n, with_ties = F) %>%
# group_by(.metric) %>%
# arrange(mean) %>%
# group_by(.metric) %>%
# mutate(
# workflow_rank = row_number(),
# dir = "min"
# ) %>%
# ungroup()
#
#
# p_df_max <- p_df %>%
# filter(!.metric %in% minimize) %>%
# group_by(wflow_id, .metric) %>%
# slice_max(order_by = mean, n = n, with_ties = F) %>%
# group_by(.metric) %>%
# arrange(-mean) %>%
# mutate(
# workflow_rank = row_number(),
# dir = "max"
# ) %>%
# ungroup()
#
# if (rank_by_metric == TRUE) {
# p_df_joined <- p_df %>%
# group_by(wflow_id, .metric) %>%
# slice_max(order_by = mean, n = n, with_ties = F) %>%
# group_by(.metric) %>%
# arrange(-mean) %>%
# mutate(workflow_rank = row_number()) %>%
# ungroup()
#
# x_axis <- glue::glue("Workflowrank based on {metric}")
# } else {
# p_df_joined <- bind_rows(p_df_min, p_df_max)
#
# x_axis <- glue::glue("Workflowrank based on each different metric")
# }
#
#
#
#
# if (all_metrics) {
# fct_wr <- facet_wrap(vars(metric_name), scales = "free")
#
# facet <- list(fct_wr)
# y_axis <- list(labs(y = NULL))
# } else {
# p_df_joined <- p_df_joined %>%
# filter(.metric == metric)
# facet <- list()
# y_axis <- list(labs(y = glue::glue("{p_df_joined$metric_name}")))
# }
#
#
#
# p <- p_df_joined %>%
# ggplot(aes(x = workflow_rank, y = mean, shape = recipe)) +
# geom_errorbar(aes(ymin = mean - std_err, ymax = mean + std_err), color = "gray50", lty = 2, width = 0.4) +
# geom_point(size = 3, aes(color = model)) +
# labs(
# title = "Performance Comparison of Workflow Sets",
# x = x_axis,
# color = "Model Types",
# shape = "Recipes"
# ) +
# scale_x_continuous(breaks = scales::pretty_breaks(), limits = c(0, NA)) +
# scale_y_continuous(labels = pederlib::komma()) +
# facet +
# y_axis
#
# return(p)
# }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.