QTE: IPW estimator for the Quantile Treatment Effect

Description Usage Arguments Value References

View source: R/QTE.R

Description

IPW estimator for the Quantile Treatment Effect

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
QTE(
  y,
  d,
  x,
  ps,
  beta.lin.rep,
  tau = 0.5,
  bw = "nrd0",
  trim = FALSE,
  trim.at = NULL,
  whs = NULL
)

Arguments

y

An n x 1 vector of outcome of interest.

d

An n x 1 vector of binary treatment adoption indicators.

x

An n x k matrix of covariates used in the propensity score estimation

ps

An n x 1 vector of fitted propensity scores.

beta.lin.rep

An n x k matrix of estimates of the asymptotic linear representaion of the propensity score parameters (used to compute std. errors).

tau

An l x 1 vector of quantile to compute the QTE at. If NULL, then we set tau = 0.5.

bw

Bandwidth choice to compute densities (used to compute std. errors). Options are "ucv","nrd", "nrd0", "bcv", "SJ" - see bw.nrd for additional details. Default choice is "nrd0".

trim

Logical argument to whether one should trim propensity scores. Deafault is FALSE.

trim.at

Only used if trim=TRUE. If a scalar, trim all propensity score below trim.at and above 1 - trim.at. If a 2 x 1 vector, trim all propensity scores below trim.at[1] and all propensity scores above trim.at[2]. If NULL, trim.at is set to 1e-10.

whs

An optional n x 1 vector of weights to be used. If NULL, then every observation has the same weights.

Value

A list containing the following components:

qte

The estimated QTE

qte.se

Estimated (pointwise) std. error of the QTE.

qte.inf

Estimated influence function of QTE estimator.

tau

The evaluation points of QTE.

References

Sant'Anna, Pedro H. C, Song, Xiaojun, and Xu, Qi (2019), Covariate Distribution Balance via Propensity Scores, Working Paper <https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3258551>.


pedrohcgs/IPS documentation built on Dec. 22, 2021, 7:39 a.m.