Description Usage Arguments Value
View source: R/sparsereg3D.sel.r
Model Selection based on Cross-Validation
1 2 | sparsereg3D.sel(sparse.reg, lambda = 0, ols = FALSE, step = FALSE,
lambda.1se = FALSE)
|
sparse.reg |
output from |
lambda |
vector of regularization parameter values for lasso regression |
ols |
logical. If TRUE model will be fitted with OLS insted of using lasso |
step |
logical. If TRUE stepwise procedure will be used when fitting OLS model |
lambda.1se |
logical. If TRUE one sigma lambda rule will be used (largest lambda value with cv.err less than or equal to min(cv.err)+ SE). |
seed |
random number generator |
List of objects including:
model
: list of objects containing model description
lambda
: Regularization parameter value for lasso models
coefficients
: Model coefficients
std.param
: Standardization parameters
comp
: logical. Indicate whether the compositional variable is modeled or not.
@keywords Model selection
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.