plot_pca: Create principal components analysis plot.

Description Usage Arguments

View source: R/plot.R

Description

Create principal components analysis plot.

Usage

1
2
3
4
  plot_pca( data, labeltext = names(data), xLabel =
  "Principal component 1", yLabel = "Principal component 2",
  pca_function = princomp, labels_at_edge = TRUE,
  explode = 1.1, textsize = 3)

Arguments

data

The data used for clustering

labeltext

The labels to use for each column in the data. Defaults to names(data).

xLabel

x-axis label

yLabel

y-axis label

pca_function

The function to use for principal component analysis. This could be princomp, prcomp or factanal.

labels_at_edge

If TRUE, labels are printed at at edge of plot, otherwise labels are printed next to each point.

explode

A multiplication factor that determines the distance of each label from the point. If over-plotting of labels is a problem, then use a larger explode factor.

textsize

Text label size passed to geom_text


pentalibra/ggcluster documentation built on May 25, 2019, 12:46 a.m.