rescale_parameters <- function(prior, params){
## function scaled = rescale_parameters(prior, params)
## % scaled = rescale_parameters(prior, params)
## %
## % This function will do the reverse of scale_parameters.
lp <- ncol(params) #pjd: use df for params
scaled <- matrix(NA,nrow=nrow(params),ncol=ncol(params)) #pjd - vectorising
for(i in 1:lp){
priortype <- prior[i,2]
p3 <- prior[i,3]
p4 <- prior[i,4]
## % currently only handles uniform or Gaussian priors
if( priortype == 'uniform' )
scaled[,i] <- params[,i]*(p4 - p3) + p3
if( priortype == 'gaussian' )
scaled[,i] <- params[,i]*p4 + p3
if( priortype == 'jeffreys' )
scaled[,i] <- 10^(params[,i]*(log10(p4) - log10(p3)) + log10(p3))
}
return(scaled)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.