README.md

OMLRandomBotv2

The current implementation of the Bot follows the following scheme:

  1. Init Bot with a task.id
  2. Draw a learner with probability proportional to its param set dimensions
  3. Draw a random hyperparameter config
  4. Resample sampled learner/hyperpars on the OML Task

Learners

From the old bot - xgboost - svm - kernel knn - random forest - rpart - glmnet

New learners - Multinomial Logit (from mxnet?) - Cubist - fully connected neural networks (mxnet?) up to depth 3 or 4

Worthy Candidates (From Kaggle etc.) - ExtraTrees (we can enable this in ranger) - Lightgbm / Catboost (Probably to similar to xgboost) - LibFM (Factorization Machines)[https://github.com/dselivanov/rsparse] - (LiquidSVM)[https://cran.r-project.org/web/packages/liquidSVM/index.html] - Adaboost / (FastAdaBoost)[https://cran.r-project.org/web/packages/fastAdaboost/fastAdaboost.pdf]

Datasets

Parameter Spaces

See learners.R

Open Questions:

How do I run the bot?

We currently require a OML task.id for the bot to run

bot = OMLRandomBot$new(11)
bot$run()

Required packages

# Benchmark
library(mlr)
library(batchtools)
library(R6)
library(callr)
library(data.table)
library(ParamHelpers)

# Learners
library(rpart)
library(glmnet)
library(e1071)
library(ranger)
library(xgboost)


pfistfl/OMLRandomBotv2 documentation built on Jan. 26, 2019, 12:20 p.m.