knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", out.width = "100%" )
The goal of metatools is to enable the use of metacore objects. Metatools can be used to build datasets or enhance columns in existing datasets as well as checking datasets against the metadata in metacore.
You can install the latest released version of metatools from CRAN with:
``` {r, eval = FALSE} install.packages("metatools")
And the current development version from [GitHub](https://github.com/pharmaverse/metatools) with: ``` {r, eval = FALSE} devtools::install_github("pharmaverse/metatools")
Here is a basic example of some functions to build datasets and create new columns.
library(metatools) library(metacore) library(haven) library(dplyr) load(metacore_example("pilot_ADaM.rda")) metacore <- metacore %>% select_dataset("ADSL") ds_list <- list(DM = read_xpt(metatools_example("dm.xpt"))) # Pull in columns from DM to be in ADSL adsl <- build_from_derived(metacore, ds_list, predecessor_only = FALSE) adsl # Now we can make some new columns and converting columns into factors adsl %>% select(USUBJID, AGE, ETHNIC) %>% create_cat_var(metacore, AGE, AGEGR1, AGEGR1N) %>% #Add an AGEGR1 and AGEGR1N column convert_var_to_fct(metacore, ETHNIC) # Change ETHNIC to as factor
Metatools can also be used to run checks
data <- read_xpt(metatools_example("adsl.xpt")) # Checks can be run on a single column check_ct_col(data, metacore, TRT01PN) # Checks column only contains control terminology # Or across all the columns check_ct_data(data, metacore) %>% # Checks control terminology for all columns check_variables(metacore) # Check all variables in the metadata are in the dataset and there aren't any extra columns
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.