#' Survival Function for Mixture Cure Rate Distribution
#'
#' Consider the survival function of mixture cure rate (MCR) distribution:
#' S(t) = p + (1-p)S0(t), where S0(t) is a survival distribution
#' for susceptible subject, i.e., S0(0)=1 and S0(t) -> 0 as t -> Infinity.
#' S0(t) can be any proper survival function. For generality of S0(t), consider
#' the generalized modified Weibull (GMW) distribution with parameters
#' (alpha, beta, gamma, lambda) Martinez et al(2013).
#'
#' alpha: scale parameter
#' beta and gamma: shape parameters
#' lambda: acceleration parameter
#'
#' S0(t) = 1-(1-exp(-alpha*t^gamma*exp(lambda*t)))^beta
#'
#' Special cases:
#' (1) Weibull dist: lambda = 0, beta = 1. Beware of the parameterization difference.
#' (2) Exponential dist: lambda = 0, beta = 1, gamma = 1. The shape parameter (hazard rate) is alpha.
#' (3) Rayleigh dist: lambda = 0, beta = 1, gamma = 2.
#' (4) Exponentiated Weibull dist (EW): lambda = 0
#' (5) Exponentiated exponential dist (EE): lambda = 0 and gamma = 1
#' (6) Generalized Rayleigh dist (GR): lambda = 0, gamma = 2
#' (7) Modified Weibull dist (MW): beta = 1
#'
#' Let T be the survival time according to survival function S1(t) below.
#' Denote T's distribution as MCR(p, alpha, beta, gamma, lambda, tau, psi),
#' where tau is the delayed effect and psi is the hazard ratio after delayed effect,
#' ie. proportional hazards to S(t) after delay tau.
#' S(t) = p + (1-p)*S0(t)
#' S1(t) = S(t)I(t<tau) + S(tau)^(1-psi)*S(t)^psi
#' In brief, S0(t) is the proper GMW distribution (alpha, beta, gamma, lambda);
#' S(t) is MCR with additional cure rate parameter p;
#' In reference to S(t), S1(t) is a delayed effect distribution and proportional hazards after delay.
#'
#' MCR(p, alpha, beta, gamma, lambda, tau, psi=1) reduces to S(t)
#' MCR(p, alpha, beta, gamma, lambda, tau=0, psi) reduces to S(t)^psi, i.e. proportional hazards.
#' MCR(p=0, alpha, beta, gamma, lambda, tau=0, psi=1) reduces to S0(t)
#' MCR(p=0, alpha, beta=1, gamma=1, lambda=0, tau=0, psi=1) reduces to exponential dist.
#'
#' @param p Cure rate parameter. When p = 0, it reduces to GMW(alpha, beta, gamma, lambda) distribution.
#' @param alpha Generalized modified Weibull (GMW) distribution parameters. alpha > 0
#' @param beta Generalized modified Weibull (GMW) distribution parameters. beta > 0
#' @param gamma Generalized modified Weibull (GMW) distribution parameters. gamma >= 0 but gamma and lambda cannot be both 0.
#' @param lambda Generalized modified Weibull (GMW) distribution parameters. lambda >= 0 but gamma and lambda cannot be both 0.
#' @param tau Threshold for delayed effect period. tau = 0 reduces no delayed effect.
#' @param psi Hazard ratio after delayed effect. psi = 1 reduces to the survival function without proportional hazards after delayed period (tau).
#'
#' @return An object with m: Median; and x: samples
#'
#' @examples
#'
#' #(1) Exponential distribution mixture with cure rate 0.15
#' p = 0.15; alpha = log(2)/12
#' x = smcr(t=12, p=0.15, alpha = log(2)/12, beta=1, gamma=1, lambda=0)
#'
#' t=seq(1,100)
#' c = sapply(t, smcr, p=0.15, alpha = log(2)/12, beta=1, gamma=1, lambda=0)
#' plot(t, c, type="l", ylab="", main="Survival Function")
#'
#' #(2) Weibull distribution mixture with cure rate 0.15
#' p = 0.15; alpha = log(2)/12
#' x = smcr(t=12, p=0.15, alpha = log(2)/12, beta=1, gamma=0.9, lambda=0)
#'
#' #(3) Rayleigh distribution mixture with cure rate 0.15
#' p = 0.15; alpha = log(2)/100
#' x = smcr(t=12, p=0.15, alpha = alpha, beta=1, gamma=2, lambda=0)
#'
#' #(4) GMW distribution mixture with cure rate 0.15
#' p = 0.15; alpha = log(2)/12
#' x = smcr(t = 12, p = 0.15, alpha = alpha, beta=1, gamma=1, lambda=0.2)
#'
#' @export
#'
smcr = function(t, p=0.3, alpha = log(2)/12, beta=1, gamma=1, lambda=0, tau=0, psi=1) {
1 - pmcr(t, p, alpha, beta, gamma, lambda, tau, psi)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.