bci.r | R Documentation |
regression coefficient and confidence interval to correlation coefficient: b and ci -> t -> r
unadjusted t-statistics estimate bivariate correlation coefficient (enter k = 1)
adjusted t-statistics (e.g., from a regression) estimate partial correlation coefficient (aloe & thompson, 2013).
bci.r(b, cil, ciu, n, k, result = c("cil", "ciu", "avg", "marge"))
b |
the regression coefficient (untransformed only, see other functions e.g., expb.r() for transformed coefficients) |
cil |
the lower bound of the 95 confidence interval |
ciu |
the upper bound of the 95 confidence interval |
n |
the sample size |
k |
the total number of predictors, enter k = 1 if bivariate |
bci.r(.156, .10, .225, 166, 3)
dat %>% mutate (r_from_bci = bci.r(reg_coef, reg_lowerci, reg_upperci, reg_n, reg_predictors)) -> dat
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.