View source: R/nlsregression.R
nlsregression | R Documentation |
Creates regression parameter estimates and plots with any function you want that has no more than two independent variables
nlsregression(
func,
y,
x,
z = NULL,
startvalues = NULL,
weight = NULL,
weighting = TRUE,
xlab = NULL,
ylab = "y",
header = NULL,
z_plot_lines = NULL,
weightcolorpoints = TRUE,
x_log10 = FALSE,
toPlot = "all",
plot_x_function = "ignore",
regressioncolor = "blue",
weight_threshold = NULL,
crossvalid = NULL,
...
)
func |
function that shall be fitted. Function should contain the dependent variable y and and the independent variable x, eventually a second independent variable z. All other unknowns are treated as parameters that are estimated. |
y |
dependent variable,vector |
x |
independent variable,vector |
z |
optional independent variable,vector |
startvalues |
the optimization algorithm may require starting values for the fitting procedure. provide them in a list with the parameter names: e.g. list(a=3,b=2) |
weight |
optional weight,vector |
weighting |
if weighting is TRUE, the fit will minimize the weighted residuals |
xlab |
name of x axis in plot |
ylab |
name of y axis in plot |
header |
plot function main argument |
z_plot_lines |
vector>1 of values for z you want to be plotted into the graph |
weightcolorpoints |
if TRUE, the points are clustered into three quantiles according to their weight and coloured lighter for low weights. |
x_log10 |
allows log10 scale for X axis if set to TRUE. Only changes the picture, not the regression! |
toPlot |
"all", "frame" (axis etc), "observations" (points), "regressionline" (line), "infos" (parameters, R2) |
plot_x_function |
depreciated, please do not enter into function call. |
regressioncolor |
color of regression line and paramter text |
weight_threshold |
if numeric, all countries below this threshold will be excluded (e.g. to exclude minor islands) |
crossvalid |
vector with boolean values, indicating which data should be excluded from sampling and rather be used for validation |
... |
will be passed on to function nls |
A nice picture and regression parameters or eventually some errors.
Benjamin Leon Bodirsky, Susanne Rolinski, Xiaoxi Wang
## Not run:
x=1:10
y=(1:10)^2+1
z=c(10:1)
# one independent variable
nlsregression(func=y~a*x+b,y=y,x=x,startvalues=list(a=1,b=1))
# two independent variables
nlsregression(func=y~a*x^1.1+b*z+c*x,y=y,x=x,z=z,startvalues=list(a=1,b=1,c=0))
# no fit because residuals are zero (excluded from the nls makers due
to statistical reasons)
nlsregression(func=y~x^a+b,y=y,x=x,z=z,startvalues=list(a=1,b=1,c=0))
DNase1 <- subset(DNase, Run == 1)
DNase1$sets<- c(rep(1,8),rep(2,8))
nlsregression(func=y~a*x+b,y=DNase1$density,x=DNase1$conc,startvalues=list(a=1,b=1))
nlsregression(func=y~a*x+b*z,y=DNase1$density,x=DNase1$conc,z=DNase1$sets,
startvalues=list(a=0.1344,b=0.2597))
nlsregression(func=y~a*x+b*z,y=DNase1$density,x=DNase1$conc,z=DNase1$sets,
startvalues=list(a=0.1344,b=0.2597),plot_x_function=log)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.