| affineCFandDerivs | R Documentation |
Functions to evaluate the P- or Q-measure characteristic function, evaluate CF derivatives with respect to the first argument (log-asset price).
affineCF(
u,
params.Q,
params.P = NULL,
t.vec,
v.0,
jumpTransform = getPointerToJumpTransform(fstr = "expNormJumpTransform")$TF,
N.factors = 3,
CGF = FALSE,
mod.type = "standard",
mkt = NULL,
...
)
affineCFderivs(
u,
params.Q,
params.P = NULL,
t.vec,
v.0,
jumpTransform = getPointerToJumpTransform("expNormJumpTransform"),
N.factors = 3,
mod.type = "standard",
mkt = NULL,
...
)
affineCFderivsNumerical(
u,
params.Q,
params.P = NULL,
t.vec,
v.0,
N.factors = 3,
hh = 1e-04,
jumpTransform = getPointerToJumpTransform("expNormJumpTransform")$TF,
mod.type,
mkt = NULL,
...
)
u |
|
params.Q |
parameter lists, see |
params.P |
parameter lists, see |
t.vec |
numeric vector with maturities, see |
v.0 |
|
jumpTransform |
XPtr to jump transform (in |
N.factors |
integer, number of SV factors |
CGF |
return Cumulant-Generating Function or Characteristic/Moment Generating Function? CGF if |
mkt |
|
... |
Further arguments passed to |
affineCF evaluates the CF/CGF of an affine model under P or Q measures, at matrix u of size U x (N.factors+1), maturity vector t.vec of length T, and variance factor matrix of size S x N.factors. The result is a U x T x S matrix.
affineCFderivs evaluates derivatives of the characteristic function with respect to its first argument via ODE solutions of an extended system. A list of length 4 is returned, each holding an U x T x S matrix. This is useful for calculating moments of log-returns.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.