inference: Running the GMD inference on a KPR model

View source: R/inference.R

inferenceR Documentation

Running the GMD inference on a KPR model

Description

Running the GMD inference on a KPR model

Usage

inference(KPR.output, mu = 1, r = 0.05, weight = TRUE, scale = FALSE, ...)

Arguments

KPR.output

Output from running the KPR function.

mu

GMD inference parameter

r

GMD inference parameter

weight

Logical, indicates whether to include a penalty factor when computing the beta.glasso vector.

scale

Logical, indicates whether to scale the design matrix with respect to the eigenvalues of the composite Q matrix.

...

Additional parameters passed to the GMD function.

Value

An object of classes KPR with the following fields added:

p.values

P-values for each penalized coefficient, resulting from the GMD inference.

bound

The stochastic bound used to compute each p-value.

sigmaepsi.hat

The estimated standard deviation of epsilon.


pknight24/KPR documentation built on Aug. 5, 2023, 7:01 a.m.